اعلانات
الجديد علاج الفشل الرئوى - مكتب فيضي للمحاماه - الاردن - ارفف ثلاجات وحوامل واستندات للشركات - بنتي ماجتها الدوره وعمرها الان ??ساعدوني - بنتي ماجتها الدوره وعمرها الان ??ساعدوني - الصمام الميترالي - المركز التشيكى للعلاج الطبيعى والتاهيلى - المركز التشيكى للعلاج الطبيعى والتاهيلى -
آخر المشاهدات هاتف وعنوان مستوصف القمة الشاملة - الزلفي, محافظات الرياض - تقرير مستشفى المركز التخصصي الطبي بحث جاهز للطباعة - هاتف وعنوان مستوصف مركز الرياض الطبي - شارع العروبة, مدينة الرياض - هاتف و عنوان مدرسة ابو العالية بالرياض و معلومات عنها - طريقة عمل عصير بطيخ او حبحب او جح لا تفوتك - هاتف مدرسة مرارة بن الربيع متوسط و معلومات عنها بمنطقة الرياض بالسعودية - بحث شامل عن أهداف الإعلام التربوي جاهز للطباعة - وصفة لعلاج التهاب المفاصل و آلام العضلات بخلطات الاعشاب - وصفات تعمل بالمنزل - هاتف و ارقام مستشفي الملك خالد بتبوك - هاتف وعنوان مستشفى الأمير عبد المحسن - العلا, المدينة المنورة - هاتف مدرسة الزبير بن العوام ابتدائي و معلومات عنها بالرياض - هاتف و معلومات عن أسواق الحسن مول بالمدينة المنورة - بحث مفصل عن التراكيب الجيولوجية جاهز للطباعة - هاتف وعنوان مفروشات ريناد - النزهه, جدة - طريقة تحضير كعك تلمسان خطوة بخطوة بالصور - بحث شامل عن مهارات التدريس لمعلمي المرحلة الإبتدائية جاهز للطباعة - بحث كامل عن فلسطين جاهز للطباعة - هواتف مؤسسة بن غازي للمقاولات ومعلومات عنها بالسعودية - ملف شامل لعلاج الامراض الجنسية والتناسلية وامراض النساء بالاعشاب الطبيعية - فوائد طبية للعبادات الاسلامية بشهادة العلم - دراسة جدوى وميزانية عمل مشروع محل شاورما بالسعودية - هواتف مكتب الضمان الاجتماعى النسوي بالرياض ومعلومات عنها بالسعودية - هاتف و عنوان مستشفى الرس العام و معلومات عنها بالقصيـم بالسعودية - هاتف و ارقام مستشفى النور التخصصي بمكة المكرمة - أسباب حدوث الإسهال - بحث كامل عن السكان والتربية جاهز للطباعة - هاتف ومعلومات عن دار الرويسان للشقق المفروشة بالرياض - وصفة بسيطة ومجربة لعلاج البهاق بالاعشاب - بحث مفصل عن القروض جاهز للطباعة - هاتف وعنوان المستشفى الوطني - الملز, مدينة الرياض - تقرير مفصل عن الميزانية العامة للدولة جاهز للطباعة - بحث مفصل عن النظام القضائي فى الحضارة الإسلامية جاهز للطباعة - هاتف وعنوان بيت الغذاء الطبيعي - البلد, المدينة المنورة - السيرة الذاتية لسعادة السفير السعودى فى بيروت - تقرير مفصل عن قضية الاحتجاج في النحو العربي جاهز للطباعة - علاج الفشل الرئوى - تقرير مفصل عن الضابط الإداري جاهز للطباعة - بحث مفصل عن الوديعة جاهز للطباعة - بحث مفصل عن البطاريات جاهز للطباعة - شروط اصدار تصريح السفر الخاص بالمقيمين بكفالة الشركات بقطر - هاتف وعنوان مؤسسة صالح عمر العمودي التجارية - الخبر, مدينة الخبر - هاتف وعنوان مؤسسة حسين عمر العمودي للأقمشة - مشرفه, جدة - هاتف وعنوان مؤسسة محسن عمر العمودي التجارية - باب مكه, جدة - علاج سيلان اللعاب من الفم أثناء النوم - طريقة تحضير كيكة شعر بنات و مارشميلو خطوة بخطوة - هاتف وعنوان مطعم مشويات لبنان - تبوك - طريقة عمل وصفة فم السمكة الشهية - هنا اسماء المرشحين للتوظيف في وزارة الأوقاف بدولة الكويت لهذا العام - طريقة عمل الرز بالباذنجان بطعم يجنن - وصفات وطبخات واكلات - طريقة عمل مكرونه بالجمبرى من مطبخ منال العالم - معلومات الاتصال بمشرف على أمريكية الشارقة بالملحقية الثقافية السعودية فى الامارات - بحث كامل عن القيادة جاهز للطباعة - أرقام طوارئ الكهرباء بالمملكة العربية السعودية - هاتف وعنوان الموسى للابواب الاتوماتيكية - السويدي, مدينة الرياض - طفح حوض السباحة (Swimming pool rash) عند الاطفال - هاتف وعنوان مشغل أحمد حسن العمري - السويدي, مدينة الرياض - هاتف وعنوان مؤسسة أحمد حسن العمري للأقمشة - الصحيفه, جدة - هاتف وعنوان مستوصف الحياة الطبي - الشعبه, مدينة الرياض - التفاح مضار وفوائد - شرح مبسط لمبادىء المحاسبه الماليه - هاتف وعنوان مطعم ركن الجمبري - باب مكه, جدة - هاتف وعنوان مطعم الكازار - الشرفيه, جدة - هاتف وعنوان مؤسسة الرضوان للخدمات الطبية - المربع, مدينة الرياض - 2 generation UGG Sale - طريقة عمل مرق القرع وصفة رمضانية لذيذة من منال العالم - بحث مفصل عن المدرسة جاهز للطباعة - طريقة تحضير coffee ice cream خطوة بخطوة - تقرير مفصل عن نظام الفصول الافتراضية Smart Meeting جاهز للطباعة - فساتين دلع للبنوتات الصغار - جهاز أندرو بينس لتكبير القضيب (العضو الذكري) - هاتف وعنوان مستشفى غسان نجيب فرعون - السلامه, جدة - هاتف وعنوان مستوصف الدكتور غسان فرعون - الفيصليه, نجران - هاتف وعنوان مستوصف الدكتور غسان فرعون لطب الاسنان - البلد, المدينة المنورة - هاتف وعنوان مجمع عيادات الدكتور غسان نجيب فرعون لطب الأسنان - الطائف المركزي, الطائف - طريقة عمل الجبن البارميزان( الرومي) لا تفوتك - طريقة عمل طبق اللازانيا بالسبانخ من مطبخ الشيف منال العالم - بحث مفصل عن الحضانة جاهز للطباعة - هواتف مكتب الضمان الاجتماعى بالجوف ومعلومات عنها بالسعودية - الحناء بالبابونج لإكساب الشعر اللون البني الفاتح - تقرير شامل عن الصخور الرسوبية جاهز للطباعة - هاتف وعنوان مشغل وصالون الدانة - الطائف وج, الطائف - طريقة عمل قراقيش سادة بالشمر - return accommodation UGGs Boots Outlet - بحث شامل عن الغيبـــــــــة والنميمــــــــــــــة جاهز للطباعة - برنامج غذاء كامل للاطفال في الشهر الثامن لكبار اطباء الاطفال - طريقة عمل سندويشات الهمبرجر بطعم ياخذ العقل - طريقة عمل معجنات جديده ولذيذه .. شوصون الدجاج و والخضار بالصور - الشهر الثامن من الحمل بالتفصيل - هاتف ومعلومات عن عيادة الدكتورة سمر خالد شكري لطب الأسنان بالرياض - طريقة تحضير كعب الغزال من الشيف منال العالم - طريقة تحضير حلوى بكاوكاو والشكلاط بدون فرن - طريقة تحضير الكانيلوني من الشيف منال العالم - هواتف الشركة العربية الأولى للتسويق ومعلومات عنها بالسعودية - عنوان و هواتف القنصلية السعودية فى لوس أنجلوس ومعلومات شاملة عنها - طريقة عمل ساندويتش الدجاج بخبز الصاج و الكريمة مثل المطاعم - هواتف مؤسسة راشد للمقاولات ومعلومات عنها بالسعودية - بحث كامل عن الرقابة الإدارية جاهز للطباعة - طريقة اعداد سلطة الروب بالذ طعم خطوة بخطوة - ملف شامل عن مرض الايدز الاسباب العلاج الوقاية - هاتف وعنوان مستوصف الراجحي الدولي - حي البطحاء, مدينة الرياض - الحمى المالطيه Brucillosis مرض معدى يتميز بارتفاع في درجة الحرارة - هاتف ومعلومات عن شركة ابن معمر للنقل والسفريات بالرياض - تلبيسة الاسنان .. هل يمكن ازالة التلبيسه الدائمه؟ - هاتف وعنوان مكتب ناصر الحجوري للإستقدام - ينبع - اسباب واعراض و علاج سوء التغذية عند الاطفال - طريقة اعداد قارلك برد ( خبز بالثوم ) نفس الي في بيتزاا هت بالذ طعم خطوة بخطوة - هاتف وعنوان محل حمزة الأخضر للأدوات المنزلية - البلد, المدينة المنورة - بحث شامل عن إدارة الجودة الشاملة في مؤسسات التعليم العالي جاهز للطباعة - طريقة اعداد دجاج بالفطر بالذ طعم خطوة بخطوة - بحث شامل عن اللعب عند الأطفال جاهز للطباعة - هاتف وعنوان مؤسسة محمد حسن ناصر مجلي - تبوك - تقرير مفصل عن النشاط البدني التربوي والاندية الرياضية جاهز للطباعة - نموذج موحد لعقد توزيع تجاري ( أصلي أو فرعي ) بالسعودية - هاتف وعنوان مفروشات ابو الامين - البريد, الدمام - طريقة تدليك صدر طفلك بالصور - هاتف و ارقام مطعم كندي بتبوك - مشكلات الخجل عند الاطفال - بحث شامل عن النظام السياسي في اسرائيل جاهز للطباعة - بنتي ماجتها الدوره وعمرها الان ??ساعدوني - طريقة عمل مقليه أهل الحجاز مع سلطة الكراث+ لقيمات بالصور - بحث مفصل عن البروتينات جاهز للطباعة - بحث مفصل عن المهر جاهز للطباعة - وصفة هائلة من الطب البديل لعلاج الروماتيزم أمراض العظام والمفاصل بالاعشاب - هاتف و ارقام مطعم مهران بتبوك - طريقة تحضير Chicken Fajitas - طريقة عمل وصفة بسكويت الينسون على طريقة منال العالم - هاتف و ارقام عيادة د. زاهر قضيب البان بمكة المكرمة - بحث شامل عن تقنية المعلومات جاهز للطباعة - طريقة عمل وصفة سلطة الزبادي بالنعناع -الهندية الحارة- الشهية - بحث شامل عن اساليب التعلم النشط جاهز للطباعة - هاتف و ارقام فندق جوهرة القصر الأبيض بمكة المكرمة - بحث شامل عن العرض و الطلب جاهز للطباعة - تقرير مفصل عن بحر الرمل في الشعر العربي المعاصرجاهز للطباعه - هاتف وعنوان مستوصف منار الطبي - بقيق, الدمام - بحث شامل عن التوجيه التربوي جاهز للطباعة - تقرير كامل عن طرق التدريس جاهز للطباعة - تقرير مفصل عن المحافظة على الماء جاهز للطباعة - طريقة عمل وصفة البطاطس المهروسة مع اللبن الرايب الشهية - شرح تركيب وكيفية عمل الغسالة الاتوماتيك من قسم الاصلاح والصيانة - بحث مفصل عن سيف الدين قطز جاهز للطباعة - هاتف وعنوان محلات السعيد للأدوات المنزلية - باب مكه, جدة - هاتف و ارقام مجمع عيادات د. خالد بخش بمكة المكرمة - طريقة عمل وصفة البنة المدحبرة الشهية - بحث مفصل عن الحياء خلق الإسلام جاهز للطباعة - بحث شامل عن البدل فى اللغة العربية جاهز للطباعة - هواتف وأرقام مجمع عيادات د. محمد العنزي الطبي والعنوان - بحث شامل عن القانون التجاري جاهز للطباعة - هاتف وعنوان مؤسسة مفروشات العبد اللطيف - العليا, مدينة الرياض - القبول في برنامج متعددي العوق بالمملكة العربية السعودية - هاتف و ارقام مستشفى الرفيع بمكة المكرمة - بحث شامل عن سوق الأوراق المالية جاهز للطباعة - بحث كامل عن البكتيريـا جاهز للطباعة - هاتف وعنوان مؤسسة فوزي جميل قاسم للمصاعد - البيبان, مكة المكرمة - هاتف وعنوان مستشفى المواساة - المطار, المدينة المنورة - بحث مختصر عن الزراعة جاهز للطباعة - وصفة هائلة من الطب البديل لعلاج التهاب الحنجره التهاب الحلق بالاعشاب - بحث مفصل عن الإعـــلان جاهز للطباعة - هاتف وعنوان شركة السيف للأواني المنزلية - طريق خريص, مدينة الرياض - هاتف وعنوان المستشفى التخصصي بأبها - ابها, مدينة ابها - الاستعلام عن تأشيرة صادرة من وزارة العمل بالمملكة العربية السعودية - طريقة عمل ريسوتو الدجاج لا تفوتك - طريقة عمل ومقادير الفاصوليا الخضراء من مطبخ منال العالم - موقع لجنة المناقصات المركزية بقطر - بحث كامل عن التسامح الدينى جاهز للطباعة - هواتف عيد كلينك بالرياض والعنوان - طريقة عمل ومقادير الفلافل من مطبخ منال العالم - هاتف ومعلومات عن فندق ديار انترناشيونال بالمدينة المنورة - فيزا عمل للسعودية متطلبات وشروط واجرءات - هاتف وعنوان استراحة العنبرية للأسماك الطازجة - المحمديه, جدة - تكاليف اقامة مشروع محل بيع لوزام البويات و الدهانات بالسعودية والعائد المتوقع - معلومات عن مساهمة مجموعة غسان النمر للإستثمارات العقارية بالسعودية - دراسة جدوى لمشروع انشاء مزارع سمكية فوق أسطح المنازل - بحث كامل حول مناهج النقد الأدبي وغايتها وأهم أنواعها جاهز للطباعة - هاتف وعنوان مطعم ديرتي - حائل - طريقة تحضير الجريش بالطماطم - ارشادات حول نظام النقل المدرسي بالمملكة العربية السعودية - هاتف و ارقام مطعم حلويات سعد الدين بمكة المكرمة - هاتف و ارقام مطاعم بيت الفطائر بمكة المكرمة - بحث مختصر عن مرض السكري جاهز للطباعة - بحث كامل عن النمذجة السريعة جاهز للطباعة - هاتف وعنوان مستوصف الأسرة الطبي - حي البديعة, مدينة الرياض - بحث كامل عن الخلايا الشمسية جاهز للطباعة - طريقة عمل فطائر لذيذه بالسكر سهله وسريعه جدا بالصور - هاتف و ارقام مستشفى د. محمد وليد العلبي بمكة المكرمة - تقرير كامل عن الشركات جاهز للطباعة - بحث كامل عن اللغة العربية جاهز للطباعة - سمات الطفل فى سن الثامنة - اجراءات توجيه معلم عائد أو ايفاد بأدارة التربية و التعليم بالمدينة المنورة - هواتف العيادات الخاصة بالكويت ,,شاملة جميع التخصصات - الكرياتين البرازيلى الاصلى للشعر - طريقة عمل تورتة الشوكولاتة بطريقة سهلة - طريقة عمل وصفة بسكوت الكاكاو على طريقة منال العالم - بحث شامل عن الخشب جاهز للطباعة - تقرير مفصل عن أول أوكسيد الكاربون من ملوثات الهواء جاهز للطباعة - النقرص ........داء الملوك من عيادة العلاج بالاعشاب والطب البديل - عنوان وهواتف سفارة السودان فى السعودية ومعلوات عنها - هاتف وعنوان الشركة الوطنية لصناعة مراتب السست والأسفنج المحدودة -العليا,مدينةالرياض - فوائد مياه البحر للاطفال والكبار - هاتف مركز غرناطة الصحي بالرياض و معلومات عنه بالسعودية - طريقة عمل وصفة حلى كروكان بالبسكويت على طريقة منال العالم -
اليوم: الخميس 24 ابريل 2014 , الساعة: 1:56 ص
آخر تحديث للموقع قبل 1 سنة و 9 شهر

اسعار صرف العملات ليوم الخميس 24 ابريل 2014


تعرف على الكويت عالم السيارات قسم الحمل والولادة وامراض النساء والاطفال اقل من 10 سنوات دورات تعليم اللغة الانجليزية والفرنسية المنتديات التجارية
المنتدى الاسلامي العام الطب والصحة اشمل دليل للوزرات والهيئات والخدمات العامة بالمملكة العربية السعودية منتدى المشروعات الصغيرة وزارات وهيئات ومؤسسات دولة الكويت
دليل وزارات و مستشفيات وشركات دول مجلس التعاون الخليجي السياحة والسفر عالم الصيد والبر التنمية البشرية وتطوير الذات واكتساب المهارات منتدي الاستشارات القانونية
الطب النبوي وطب الاعشاب البديل دورات تعليم الفوتوشوب والجرافيكس طبخات عربية وعالمية وصفات العناية بالجسم والبشرة والشعر مكياج وازياء واكسسورات روعة و جديدة
اثاث و ديكورات راقي وحديث تربية الاطفال السوق والحراج الالكتروني تلاوات قرآنية مؤثرة برامج الريجيم و انقاص الوزن والتخسيس
اشهى الاكلات و الوصفات الرمضانية موسوعة وصفات المخللات والصلصات موسوعة وصفات الدجاج موسوعة وصفات اللحوم موسوعة وصفات الاسماك والمأكولات البحرية
موسوعة وصفات الأرز موسوعة وصفات المعكرونة موسوعة وصفات الفطائر والمعجنات موسوعة اشهى وصفات السندويتشات موسوعة الاكلات والوصفات الخفيفة
موسوعة وصفات الشوربات والحساء موسوعة وصفات السلطات موسوعة وصفات العصائر والمشروبات موسوعة وصفات الحلويات موسوعة أكلات الريجيم
موسوعة وصفات اطباق الخضار اشمل دليل تجاري بالمملكة العربية السعودية
اعلانات

تقرير كامل عن الرياضيات تاريخها و علومها جاهز للطباعة

نشر قبل 3 سنة و 4 شهر


اعلانات
شاركنا رأيك بالموضوع

بحث كامل عن الرياضيات تاريخها و علومها جاهز للطباعة


بسم الله الرحمن الرحيم

الرياضيّات

الرياضيّات نظام للتفكير المنظّم يتّسع تطبيقه باستمرار. وهو علم الدراسة المنطقية لكم الأشياء وكيفها وترابطها, كما أنه علم الدراسة المجردة البحتة التسلسلية للقضايا والأنظمة الرياضية.

http://daneshnameh.roshd.ir/mavara/img/daneshnameh_up/a/a4/geometry-1.gif

وَللرياضيّات ثلاثة أوجه رئيسيّة (الجبر والهندسة والتحليل):

فتركيب مجموعات الأجسام وضمّ بعضها إلى البعض الآخر أدّى إلى مفاهيم العدد والحساب والجبر؛ بينما أدّى الإهتمام بقياس الزمان والمكان إلى الهندسة وعلم الفلك ومفهوم التسلسل الزمني. أما المجهود المبذول لفهم فكرتيّ الاستمرار والحدّ فقد أدّى إلى التحليل الرياضي وإلى اختراع الحسابين التفاضلي والتكاملي في القرن السابع عشر. هذه الأوجه الثلاثة للرياضيّات تتداخل إلى حدّ كبير.


الحساب

يشمل دراسة الأعداد الصحيحة والكسور والأعداد العشرية وعمليات الجمع والطرح والضرب والقسمة. وهو بمثابة الأساس لأنواع الرياضيات الأخرى حيث يقدم المهارات الأساسية مثل العد والتجميع الأشياء والقياس ومقارنة الكميات.
برزت اهمية معدّلات التغيّر في الفيزياء عام 1638، عندما وجد غاليليو (1564 1642) ان سرعة جسم يهبط في الفضاء أو يُرمى به فيه، تزداد باطّراد، أي أن معدّل ازدياد سرعة الجسم إلى أسفل هو ثابت . لكن ما هو مسار ذلك الجسم؟ حُلّت هذه المسألة بوضوح ونهائياً بفضل عبقرية اسحق نيوتن (1642 1727) وغوتفريد ليبنتز (1646 1716)، وكان حساب التفاضل والتكامل الذي اكتشفاه، الأداة المستعملة لهذا الغرض. حساب التفاضل والتكامل يعطي طرائق الحصول على التسارع انطلاقاً من السرعة، وعلى السرعة انطلاقاً من الموقع، موفراً الحل الدقيق للمسألة بكاملها.
في الميكانيكا، وهي فرع الفيزياء الذي وضع حساب التفاضل والتكامل من أجله، نجد هذا النوع من الحساب في جميع نواحي قانون نيوتن الثاني للحركة: القوة تساوي حاصل ضرب الكتلة بالتسارع. فإذا كانت اثنتان من هذه الكميات الثلاث معروفتين، فالمعادلة تكشف فوراً قيمة الثالثة.


الجبر

خلافاً للحساب, فالجبر لا يقتصر على دراسة أعداد معينة, إذ يشمل حل معادلات تحوي أحرفاً مثل س وص, تمثل كميات مجهولة. كذلك يستخدم في العمليات الجبرية الأعداد السالبة والأعداد الخيالية (الجذور التربيعية للأعداد السالبة).
في علم الحساب، تُمثَّل بالأعداد مختلف الكميات، كالاطوال والمساحات ومبالغ المال. إلا أن بعض المسائل الرياضية تهتم بالبحث عن عدد يمثّل كمية مجهولة. إذا كان مثلاً مجموع عددين 10 وكان احدهما 6، فما هو العدد الآخر؟ الجواب على هذه المسألة البسيطة هو 4. إلا أن أصول العثور عليه تقنة اساسية من تقنات الجبر. لحل هذه المسألة في علم الجبر، نمثّل العدد المجهول بحرف س ونقول: لدينا س+ 6= 10 (هذه معادلة جبريّة)؛ بطرح 6 من كلا الطرفين تتبسّط المعادلة: س= 10- 6= 4. فبِجَعل الحرف س يمثّل الكمية المجهولة، تمكنّا من حل المسألة.


الرياضيون الاغارقة والعرب:

استعمل رياضيون اغارقة، ومنهم ديوفانتوس (القرن الثالث ق.م.)، الأحرف في المعادلات. لكن كلمة الجبر اتت من العربية. ومعناها تجبير العظام، وقد جاءت جزءاً من عنوان كتاب للرياضي العربي الكبير الخوارزمي. بحلول القرن السادس عشر أصبحت المسائل الرياضية تصاغ في الغرب بتعابير جبريّة. وقد بدأ بذلك في فرنسا فرنسيسكوس فياتا (1540 1603) . ثم ادخل الرياضي الفرنسي رينيه ديكارت (1596 1650) الاصطلاح الذي اصبح شائعاً لاستعمال الأحرف الأخيرة من الابجدية اللاتينية (X, Y, Z) للدلالة على الكميات المجهولة، والاحرف الأولى (a, b, c) للحلول محل الاعداد المعلومة.

المعادلات والصيغ الجبرية:

تطبّق عملياً المعادلات الجبرية العاديّة في الصيغ المختلفة المستعملة في العلوم، ولا سيما في الرياضيات والفيزياء. فحجم الاسطوانة مثلاً يعطى بالمعادلة: ح= ؟ ش 2 ر، حيث ح تمثّل حجم الاسطوانة و ش شعاع احدى قاعدتها و ر ارتفاعها.


تعالج المعادلات والصيغ الجبرية حسب قواعد ثابتة. فبالامكان مثلاً تغيير المعادلة السابقة لمعرفة ارتفاع اسطوانة ذات حجم معيّن إلى المعادلة: ر= ح/؟ش 2. هذه الصيغ هي عامة، وتطبّق على جميع الاسطوانات، سواء كانت طويلة ورفيعة أو قصيرة وثخينة. هنالك صيغ مماثلة لمساحات جميع الاشكال الهندسية العادية واحجامها.


كثير من المسائل الجبرية تحتوي على أكثر من كمية مجهولة واحدة. لنأخذ مثلاً مسألة اكتشاف عددين موجبين يكون حاصل ضربهما 15 وباقي طرحهما 2. لنمثّل العددين بالحرفين س و ص، ولنترجم المعطيات بالمعادلة: س× ص= 15. لهذه المعادلة عدة حلول: 6×2,5 أو، 3 و 5؛ 7,50 و 2 الخ. لاجراء العملية علينا استعمال المعطيات الأخرى حول «الفرق»، فنحصل على المعادلة: ص- س= 2. لكي نعرف قيمة ص، نحوّل هذه المعادلة إلى: ص= س+ 2 ثم نستبدل قيمة ص هذه في المعادلة الأولى، فنصل إلى المعادلة س× (س+ 2)= 15 أو س 2+ 2 س- 15= صفر، يساعد الجبر على فهم الأحاجبي والتناقضات الظاهرية. فأي عدد مؤلف من ثلاثة أرقام، ويساوي الرقم الوسط فيه مجموع الرقمين الآخرين، هو عدد قابل للقسمة على 11. لماذا؟ يمكن الحصول على الجواب بواسطة الجبر. الحل في هذا الجدول اعداد مؤلفة من 3 أرقام. ولها جميعها خاصّتان مشتركتان: الأولى أن الرقم الأوسط يساوي حاصل جمع الرقمين الآخرين، الثانية أن هذه الاعداد جميعها قابلة للقسمة على 11. إذا مثّل س الرقم الأول و ص الرقم الثالث يكون الرقم الأوسط: (ص+ س) . وتكون قيمة العدد بكامله: 100 س+ 10 (س+ ص)+ ص أي 110س+ 11ص؛ يعطي اختزال العبارة وتحليلها إلى عواملها: 11 (10س+ ص) . وهي صيغة نهائية تطبّق على جميع الأعداد في الجدو ويظهر منها أن هذه الأعداد قابلة للقسمة على 11.
671-473-341-220-110
682-484-352-231-121
693-495-363-242-132
770-550-374-253-143
781-561-385-264-154
792-572-396-275-165
880-583-440-286-176
891-594-451-297-187
990-660-462-330-198

الجبر البُولي والجبر الافتراضي

جبر المجموعات معروف بالجبر البُولي نسبة إلى جورج بُول (1815 1864) الذي اسّس المنطق الحديث. هذا الجبر متشاكل (أي متناظر احادي) مع الجبر الافتراضي أي المنطق. يستعمل هذان النوعان من الجبر رموزاً مختلفة: ففي الأول: (؟) يعني اتحاد و(؟) يعني تقاطع؛ يقابل ذلك في الثاني: (؟) يعني «و»، (؟) يعني «أو». الجبر الافتراضي يحلّل مجموعات الاحتمالات المنطقية التي تكون فيها مختلف القضايا البسيطة أو المركبة صحيحة أو خاطئة.


يتم خلق نظام رياضي، عندما تطبّق عملية ثنائية واحدة أو أكثر على مجموعة من العناصر. العملية الثنائية هي التي تجمع عنصرين لتكوّن عنصراً ثالثاً من المجموعة الواحدة. من أكثر الأنظمة الرياضية نفعاً «الزُّمرة»؛ فهي تظهر في حالات مختلفة عدّة وتساعد على توحيد دراسة الرياضيات. نظرية الزمر وضعها ايفاريست غالوا (1811 1832) واعطاها فيما بعد أرثر كايلي (1821 1895) شكلاً منهجياً. يمكن توضيح مفهوم الزمرة بدراسة رقصة تشكيلية بسيطة (6)، حيث يغيّر أربعة راقصين مواقعهم (أو يبقون في اماكنهم) لتأليف تشكيلات مختلفة.



من الاختيارات الأربعة المتوفّرة لتحريك مستطيل (9)، تنتج مجموعة من أربعة تحوّلات. إذا اخذنا منها ازواجاً وطبّقنا عليها عملية «يتبع» السابقة، ينتج عنها جملة تحرّكات متناظرة أحادياً مع تلك التي وجدناها في المثل عن الرقص. يعرف هذان النوعان بالمتشاكلين. البحث عن التشاكلات هو بالحقيقة أساس دراسة الرياضيات.


الهندسة

نشأت الهندسة عن حاجة قدماء المصريين إلى مسح الأراضي الغائبة المعالم، للتمكّن بإنصاف من توزيع مساحاتها الخصبة المغطّاة بالوحل الذي يتركه الفيضان السنوي لنهر النيل. اخذ الأغارقة الهندسة عن المصريين وبنوا منها صرحا فكريا تامّا. فقد أنشأت «مبادىء الهندسة»، التي وضعها اقليدس حوالي 300 ق.م.، نظاماً بدهياً كاملاً هو نسيج متشابك من براهين تشتق جميعها من بعض البدهيات الأساسية. ظهرت «المبادىء» وكأنها تتحدى العقل بقولها: «إذا لم تستطع البرهان على أمر، فلا تقل انك تعرفه».
وفيما بعد طور علماء الرياضيات نظماً بديلة للهندسة رفضت فرضية إقليدس المتعلقة بالمستقيمات المتوازية. وقد أثبتت هذه الهندسات المخالفة لفرضية إقلديس (الهندسة اللاإقليدية) فائدتها - على سبيل المثال - في النظرية النسبية التي تعد واحدة من الإنجازات القيمة للتفكير العلمي.


وَتعرف الهندسة على أنها فرع من الرياضيات يُعنى بدراسة هيئات وأحجام ومواضع الأشكال الهندسية. وهذه الأشكال تشمل الأشكال المستوية كالمثلثات والمستطيلات والأشكال المجسَّمة (ثلاثية البعد مثل المكعبات والكرات).
تبرز أهمية الهندسة لأسباب عديدة. فالعالم يفيض بالأشكال الهندسية. وبما أن الأشكال الهندسية تحيط بنا من كل جانب لذلك سيكون فهمنا وتقديرنا لعالمنا أفضل لو تعلمنا شيئاً عن الهندسة.
للهندسة أيضاً تطبيقات عملية في مجالات عدة. فالمعماريون والنجَّارون يحتاجون لفهم خواص الأشكال الهندسية لتشييد مبانٍ آمنة وجذابة. كما يستخدم المصمِّمون والمهندسون المشتغلون بالمعادن والمصوِّرون مبادىء الهندسة في أداء أعمالهم.

علماء الهندسة المشهورون
أرخميدس
جاوس، كارل فريدريك فيثاغورث
إقليدس
ديكَارْت، رِينيه


الأشكال والإنشاءات الهندسية
الأسطوانة
السباعي
المثلث
الثماني الأوجه
السداسي
المجسم الأرخميدي
الجامد
السداسي السطوح
المربع
الجسم الكروي
الشكل المتعدد السطوح
المضلع
الخط المنحرف
القطاع الناقص
المعين
الخط الهندسي
القطر
المقطع الذهبي
خماسي الأضلاع
القطع المكافىء
المكعب
الدائرة
المتكررة الهندسية
المنشور
رباعي الأضلاع
متوازي الأضلاع
الهرم
الزاوية
المخروط


أنواع الهندسة

يشتمل مجال دراسة الهندسة على عدة طرق. فقد تكون الهندسة إقليدية أو لا إقليدية انطلاقاً من المسلمات نفسها التي تستخدمها الهندسة الإقليدية ولكنها توظف طرائق جبرية لدراسة الأشكال الهندسية. أما فروع الهندسة التي لا تستخدم أساليب الجبر فتسمى هندسات تركيبية.


ويمكن تقسيم الهندسة الإقليدية إلى هندسة مستوية وهندسة مجسمة. وتختص الهندسة المستوية (الهندسة المسطحة) بدراسة الأشكال ذات البعدين مثل المستقيمات والزوايا والمثلثات والأشكال الرباعية والدوائر. أما الهندسة المجسَّمة أو الفراغية فتتعلق بدراسة الأشكال ذات البُعْد الثلاثي.


وإحدى أهم مسلمات الهندسة الإقليدية هي مسلمة التوازي لإقليدس وتُعْرف أيضاً بمسلمة إقليدس الخامسة أو بديهية التوازي، وإحدى صياغاتها هي: من نقطة لا تقع على مستقيم معلوم يمكن رسم مستقيم واحد يمر بتلك النقطة ويوازي المستقيم المعلوم.


الهندسة اللاإقليدية: هناك نوع أساسي من الهندسة اللاإقليدية يدعى الهندسة الزائدية، وفيها تستبدل بمسلمة التوازي المسلمة التالية: من نقطة لا تقع على مستقيم معلوم يمكن رسم أكثر من مستقيم يمر بتلك النقطة ويوازي المستقيم المعلوم.


وفي أحد نماذج الهندسة الزائدية يعرَّف المستوى على أنه مجموعة النقاط الواقعة داخل دائرة، ويعرف المستقيم على أنه وتر من الدائرة، وتعرف المستقيمات المتوازية على أنها المستقيمات التي لا تتقاطع. وتسمى الهندسة الزائدية أحياناً هندسة لوباتشيفسكي إذ إنها اكتشفت في بداية القرن التاسع عشر الميلادي بواسطة عالم الرياضيات الروسي نيكولاي لوباتشيفسكي. وهناك نوع أساسي آخر من الهندسة اللاإقليدية يدعى الهندسة الناقصية تستبدل فيها بمسلمة التوازي المسلمة التالية: من نقطة لا تقع على مستقيم معلوم لا يمكن رسم مستقيم لا يقاطع المستقيم المعلوم. بعبارة أخرى المستقيمات المتوازية لا وجود لها في الهندسة الناقصية.


وفي أحد نماذج الهندسة الناقصية نعرِّف المستقيم على أنه دائرة عظمى على الكرة، حيث الدائرة العظمى هي أي دائرة تنصف الكرة إلى جزأين متساويين. وكل الدوائر العظمى على الكرة تتقاطع. وتسمى الهندسة الناقصية، أيضاً، هندسة ريمان إذ إنها تطوَّرت في منتصف القرن التاسع عشر الميلادي على يد عالم الرياضيات الألماني جورج فريدريك برنارد ريمان.


الهندسة التحليلية: طريقة لدراسة الخواص الهندسية للأشكال باستخدام الوسائل الجبرية.
تستخدم الهندسة التحليلة نظاماً إحداثياً. يسمى النظام الديكارتي ويتكون من خطي أعداد متعامدين في المستوى. ويُحدَّد موقع النقاط في الأشكال الهندسية في المستوى بإعطائها إحداثيين (عددين)على خطي الأعداد س، ص. ويسمى س الإحداثي السيني وهو يحدد موقع النقطة بالنسبة لمحور س (خط الأعداد الأفقي) بينما يحدِّد ص ويسمى الإحداثي الصادي موقع النقطة بالنسبة لمحور ص (خط الأعداد الرأسي).


العرب والهندسة


لم يستطع أحد بعد إقليدس الذي دوّن علم الهندسة أن يزيد على هذا العلم شيئاً أساسياً. غير أن العرب لهم أفضال على الهندسة؛ إذ إنهم اهتموا بها حينما أهملتها الشعوب الأخرى ثم حفظوها من الضياع وناولوها الأوروبيين في زمن باكر.


برع العرب في قضايا الهندسة وشرحوها، فقد عرفوا تستطيح الكرة وألّفوا فيه ومارسوه فنقلوا الخرائط من سطح الكرة إلى السطح المستوي، ومن المسطح المستوي إلى السطح الكرويّ. ولقد كان اهتمام العرب بالناحية العملية من الهندسة أكثر من اهتمامهم بالناحية النظرية. ومن العلماء العرب الذين احتلوا منزلة كبيرة في الهندسة العالم العربي المسلم البيروني (ت440 ه، 1048 م) ومن أشهر كتبه، كتاب استخراج الأوتار في الدائرة بخواص الخط المنحني فيها. كما استطاع غياث الدين الكاشي في القرن الخامس عشر الميلادي أن يستخرج نسبة محيط الدائرة إلى قطرها ويحسبها حساباً دقيقاً.



وممن اشتهر في علم المثلثات العالم العربي المسلم أبو عبد الله محمد بن جابر البتاني (ت317 ه، 929 م). وهو أول من وضع جداول لظل التمام. وتبدو مكانة أبي الوفاء البوزجاني (ت388 ه، 998 م) في المثلثات واضحة، فقد أوجد طريقة لحساب جداول الجيب، وكذلك عرف الصلات في المثلثات.


الهندسة الفراغيَّة

المتوقّع من الرياضيين والمهندسين أن يتوصّلوا إلى حساب مساحات مختلف الأجسام الصلبة واحجامها. مساحة الأجسام المستوية السطوح تساوي مجموع مساحات سطوحها. أما بالنسبة للاهرام والاسطوانات والموشورات والمخروطات والمجسّمات الاهليلجية، فالمسألة أكثر تعقيداً. إلا أنه يمكن حساب مساحاتها


http://saudiana.com/all/3llmia/images/loc1/41.jpg


واحجامها باستعمال الهندسة الفراغية، أي هندسة الاشكال ذوات الأبعاد الثلاثة


.http://saudiana.com/all/3llmia/images/loc1/42.jpg

http://saudiana.com/all/3llmia/images/loc1/143.jpg


لا يشمل موضع الهندسة الفراغية اشكال الأجسام والمجمّعات فقط، بل يتناول أيضاً الانفعالات والقوى غير المرئية التي تخترق تلك الأجسام. فهذه الهندسة تحدّد مثلاً الشكل الواجب اعطاؤه للسدّ كي لا يهدّمه ضغط الماء، ومقدار طفو مركب ذي شكل معيّن، ومقدار ميله إذا حُمّل بطريقة غير متوازنة. أما القوى التي هي أكثر تعقيداً من الجاذبية، فأنها تثير مشاكل حلّها أكثر صعوبة.


في المضلّع المنتظم، جميع الأضلاع والزوايا متساوية، كما في المثلّث المتساوي الاضلاع والمربّع والخمّس.

http://saudiana.com/all/3llmia/images/loc1/142.jpg


http://saudiana.com/all/3llmia/images/loc1/140.jpg


http://saudiana.com/all/3llmia/images/loc1/141.jpg


برهن اقليدس على أن هنالك خمسة مجسّمات منتظمة فقط، تكون جميع سطوحها مضلّعات منتظمة متساوية: رباعي السطوح (أ)؛ المكعّب (ب)؛ المثمّن السطوح (ت)؛ ذو الاثني عشر سطحا (ث)؛ وذو العشرين سطحا (ج) . المكعّبات وحدها تتجمّع معا لملء الفراغ كلياتن.


جميع المجسّمات التي لا تحتوي على ثقوب واوجهها مسطّحة تخضع لنظرية اويلر: ق+ و= ض+ 2، حيث ق يمثّل عدد الرؤوس (القمم)، و: عدد الأوجه، ض: عدد الأضلاع. في الرباعي السطوح المثلّثية (أ) نحصل على: 4+ 4= 6+ 2. وفي المثمّن السطوح (ب) يكون معنا: 6+ 8= 12+ 2. يخضع الشكلان ت و ث للقاعدة ذاتها. هذه النظرية تثير العجب، لأنها لا تتأثر بشكل المجسّم أو حجمه.


الاحتمالات والإحصاء

الاحتمالات دراسة رياضية لمدى احتمال وقوع حدث ما. ويستخدم لتحديد فرص إمكانياة وقوع حادث غير مؤكد الحدوث. فمثلاً, باستخدام الاحتمالات يمكن حساب فرص ظهور وجه القطعة في ثلاث رميت لقطع نقدية. أما الإحصاء فهو ذلك الفرع من الرياضيات الذي يهتم بجمع البيانات وتحليلها لمعرفة الأنماط والاتجاهات العامة. ويعتمد الإحصاء إلى حد كبير على الاحتمالات. وتزود الطرق الإحصائية الحكومات, والتجارة, والعلوم بالمعلومات. فمثلاً, يستخدم الفيزيائيون الإحصاء لدراسة سلوك العديد من الجزيئيات في عينة من الغاز.

نظريَّة المجموعات

نَظَرِيَّة المَجمُوعات: طريقة لحل مسائل الرياضيات والمنطق (أو الاستنباط). ودراستنا لنظرية المجموعات تزيد فهمنا لعلم الحساب وللرياضيات ككل. وتبحث نظرية المجموعات في صفات وعلاقات المجموعات.


وتعد نظرية المجموعات من الفروع الأساسية لعلم الرياضيات. والمجموعة تجمُّع من الأشياء المحسوسة أو الأفكار. فمثلاً كل صنف هو مجموعة من الأشياء المحسوسة، بينما مواد الدستور هي مجموعة من الأفكار. وتسمى الأشياء التي تشكل المجموعة عناصر أو أعضاء المجموعة. يستخدم علماء الرياضيات الحروف لتمييز المجموعات وعناصرها. فقد تستعمل حروف لتسمية المجموعات، بينما تستخدم حروف أخرى لتسمية عناصر المجموعات. والمجموعة تحدَّد عن طريق حصر عناصرها بين القوسين ؟؟.


ويمكن أيضاً تحديد مجموعة ما بدلالة خواصها. والخاصية مفهوم يربط عناصر المجموعة بعضها ببعض.


أنواع المجموعات:
وهناك عشرة أنواع رئيسية من المجموعات هي:
1 المجموعات المنتهية 2 المجموعات غير المنتهية.
3 المجموعات الخالية 4 المجموعات وحيدة العنصر.
5 المجموعات المتكافئة 6 المجموعات المتساوية.
7 المجموعات المتداخلية 8 المجموعات المنفصلة.
9 المجموعات الشاملة 10 المجموعات الجزئية.


المجموعات المنتهية: هي التي لها عدد محدود من العناصر.



المجموعات غير المنتهية: هي التي يكون عدد عناصرها غير محدود.



المجموعات الخالية: هي التي لا تحتحوي على أي عناصر.



المجموعات وحيدة العنصر: هي التي تحوي عنصراً واحداً فقط.



المجموعات المتكافئة: هي المجموعات التي لها نفس العدد من العناصر.



المجموعات المتساوية: هي التي لها نفس العناصر.



المجموعات المتداخلة: هي التي لها عناصر مشتركة فيما بينها.



المجموعات المنفصلة: هي التي لا تحتوي على أي عناصر مشتركة فيما بينها.



المجموعات الشاملة: هي المجموعات التي تحتوي على جميع العناصر تحت الاختبار في وقت ومسألة معينين.



المجموعات الجزئية: هي المتضمَّنة في مجموعات أخرى.





العمليات على المجموعات هناك ثلاث عمليات أساسية تستخدم في حل المسائل المتعلقة بالمجموعات:

1 الاتحاد 2 التقاطع 3 المُتمِّمة.


اتحاد مجموعتين: هو المجموعة التي تتألف عناصرها من عناصر كلتا المجموعتين.



تقاطع مجموعتين: هو المجموعة المؤلفة من العناصر المشتركة بين المجموعتين.



مُتمِّمة مجموعة: هي مجموعة العناصر في س التي لا توجد في المجموعة ص.



فإذا كانت ص أي مجموعة جزئية من س فإن متممة صَ ص هي عناصر س التي لا توجد في ص.




لغةُ الأعدَاد

(1) أنواع الأعداد ثلاثة: الحقيقيّة، الخاليّة، والمركّبة. يمكن تمثيل الأعداد الحقيقيّة.
(أ) بنقاط على خط يمتد من اللانهاية السالبة حتى اللانهاية الموجبة. وهي تتضمّن جميع الأعداد الموجبة والسالبة. الأعداد الخياليّة.
(ب) تعتمد على خ، وهو الجذر التربيعي للعدد 1، وقد تكون أيضاً موجبة أو سالبة. تحتوي الأعداد المركّبة.
(ت) على جزء حقيقي وجزء خيالي. ويمكن تصويرها كنقاط محدّدة ببعدها عن خطّي الأعداد الحقيقيّة والأعداد الخياليّة. مثلاً: النقطة ف تمثّل العدد المركّب 4+ 3 خ، ق تمثّل 3 5 خ. الأرقام المركّبة شائعة الاستعمال لدى العلماء.


الأعداد الصحيحة الموجبة والسالبة:
تُسمّى الأعداد الصحيحة مثل 1 و5 و212 صحيحة موجبة. وقد استعملت منذ أن بدأ الإنسان يعدّ. في القرون الوسطى ابتكر الهنود مفهوم الأعداد الصحيحة السالبة، وذلك للتعبير عن الديون في العمليّات التجاريّة.


اكتشف الرياضيون الهنود الصفر الذي يستعمل اليوم للدلالة على غياب العدد.
قام الرياضي الاغريقي ارخميدس (287 212 ق. م.) بدراسة مسألة وجود اعداد لامتناهية في الكبر.


فبرهن انّه لا حدّاً أعلى لنظام الأعداد، وان اللانهاية، بعكس الصفر، ليست عدداً، وانّه مهما بلغ كبر عدد ما، فهناك اعداد أكبر منه.


بمفهوميّ الصفر واللانهاية اكتمل لدى الإنسان نظام للأغداد يمكن تصويره بخطّ يحوي جميع الأعداد الحقيقية ممتداً منم اللانهاية السالبة إلى اللانهاية الموجبة. ثم جاء رياضيّون ايطاليّون في القرن السادس عشر وابتكروا كميّة «خياليّة» (خ) يعطي مربّعها النتيجة 1. الأعداد التي تدخل فيها خ تُسمّى اعداداً خياليّة.

قواعِد الأعدَاد

العمليات الحسابية الرئيسية الأربع هي الجمع والطرح والضرب والقسمة.
يقوم الجمع على مبدأ الترابط، إذ يمكن اجراء جمع مجموعة أعداد بأي ترتيب دون أن تتغير النتيجة.
1+ 2+ 3= 6
أو
3+ 2+ 1= 6
أو
2+ 3+ 1= 6
يمكن تكرار عملية الطرح حسب أي ترتيب كان.
9- 3- 4= 2
9- 4- 3= 2
النتيجة هي واحدة في كلتا الحالتين.


الضرب عملية متكافئة مع عملية الجمع المتكرر. فكتابة: 7×5 مثلاً هي اختزال لكتابة: 7+ 7+ 7+ 7+ 7. يتعلم الناس جداول الضرب، لأنها أكثر سرعة من جمع أعمدة الأعداد. ليس باستطاعة الحاسبات الالكترونية والكومبيوتر القيام بعملية الضرب، رغم اشتهارها بالسرعة والدقة؛ وكل ما تقوم به إنما هو فقط اجراء عمليات جمع متتالية فائقة السرعة.


كما أن الطرح هو عكس الجمع، كذلك القسمة فهي عكس الضرب، أي كناية عن عمليات طرح متكررة.


حساب المثلَّثات

حساب المثلثات هو فن حساب أحجام المثلثات. الفكرة الأساسية فيه هي أن النسب بين أضلاع مثلث قائم الزاوية تتوقف على مقدار اتساع زاوية قاعدته (أ) سميت هذه النسب جيب أ (جا أ) وجيب تمام أ (جتا أ) وظل أ (ظا أ) وغير ذلك، ووضعت لها جداول تعطي النسب لمختلف قيم الزاوية أ. ثم اتضح أن جا أ هو خارج قسمة الضلع المقابل للزاوية أ على الضلع الأطول، وجتا أ هو خارج قسمة الضلع المجاور للزاوية أ على الضلع الاطول، وظا أ هو نسبة طول الضلع المجاور للزاوية أ لى طول الضلع المقابل لها. كل انسان يستطيع حساب عناصر أي مثلث بدقة كبيرة، إذا تسلّح


بجداول النسب المثلثية.http://saudiana.com/all/3llmia/images/loc1/40.jpg


ويستخدم الفلكيون والبحارة والمساحون حساب المثلثات بشكل كبير لحساب الزوايا والمسافات في حالة تعذر القياس بطريقة مباشرة. وتصف المعادلات المتضمنة لنسب مثلثية المنحنيات التي يستخدمها الفيزيائيون لتحليل خواص الحرارة والضوء والصوت والظواهر الطبيعية الأخرى.


حساب التفاضل والتكامل والتحليل

له تطبيقات عدة في الهندسة والفيزياء والعلوم الأخرى. ويمدنا حساب التفاضل والتكامل بطرائق لحل عديد من المسائل المتعلقة بالحركة أو الكميات المتغيرة. ويبحث حساب التفاضل في تحديد معدل تغير الكمية. ويستخدم لحساب ميل المنحنى والتغير في سرعة الطلقة. أما حساب التكامل فهو محاولة إيجاد الكمية بمعلومية معدل تغيرها, ويستخدم لحساب المساحة تحت منحنى ومقدار الشغل الناتج عن تأثير قوة متغيرة. وخلافاً للجبر, فإن حساب التفاضل والتكامل يتضمن عمليات مع كميات متناهية الصغر (كميات صغيرة ليست صفراً ولكنها أصغر من أي


كمية معطاة).http://saudiana.com/all/3llmia/images/loc1/138.jpghttp://saudiana.com/all/3llmia/images/loc1/139.jpg


ويتضمن التحليل عمليات رياضية متعددة تشمل اللانهاية والكميات المتناهية الصغر. ويدرس التحليل المتسلسلات اللانهائية وهي مجاميع غير منتهية لمتتابعات عددية او صيغ جبرية. ولمفهوم المتسلسلات اللانهائية تطبيقات مهمة في مجالات عدة مثل دراسة الحرارة واهتزازات الأوتار.




تواريخ مهمة في الرياضيات

3000 ق .ماستخدم قدماء المصريين النظام العشري. وطوروا كذلك الهندسة وتقنيات مساحة الأراضي.

370 ق.معرف إيودكسس الكندوسي طريقة الاستنفاد, التي مهدت لحساب التكامل.

300 ق.مأنشأ إقليدس نظاماً هندسياً مستخدماً الاستنتاج المنطقي.

787 مظهرت الأرقام والصفر المرسوم على هيئة نقطة في مؤلفات عربية قبل أن تظهر في الكتب الهندية.

830 مأطلق العرب على علم الجبر هذا الاسم لأول مرة.

835 ماستخدم الخوارزمي مصطلح الأصم لأول مرة للإشارة لعدد الذي لا جذر له.

888 موضع الرياضيون العرب أولى لبنات الهندسة التحليلية بالاستعانة بالهندسة في حل المعادلات الجبرية.

912 ماستعمل البتاني الجيب بدلا من وتر ضعف القوس في قياس الزاويا لأول مرة.

1029 ماستغل الرياضيون العرب الهندسة المستوية والمجسمة في بحوث الضوء لأول مرة في التاريخ.

1142 مترجم أيلارد - من باث - من العربية الأجزاء الخمسة عشر من كتاب العناصر لأقليدس, ونتيجة لذلك أضحت أعمال أقليدس معروفة جيداً في أوروبا.
منتصف القرن الثاني عشر الميلادي.أدخل نظام الأعداد الهندية - العربية إلى أوروبا نتيجة لترجمة كتاب الخوارزمي في الحساب.

1252 ملفت نصير الدين الطوسي الانتباه - لأول مرة - لأخطاء أقليدس في المتوازيات.
1397 ماخترع غياث الدين الكاشي الكسور العشرية.

1465 موضع القلصادي أبو الحسن القرشي لأول مرة رموزاً لعلم الجبر بدلاً عن الكلمات.

1514 ماستخدم عالم الرياضيات الهولندي فاندر هوكي اشارتي الجمع (+) ةالطرح (-) لأول مرة في الصيغ الجبرية.

1533 مأسس عالم الرياضيات الألماني ريجيومونتانوس, حساب المثلث كفرع مستقل عن الفلك.

1542 مألف جيرولامو كاردانو أول كتاب في الرياضيات الحديثة.

1557 مأدخل روبرت ركورد إشارة المساواة (=) في الرياضيات معتقد أنه لا يوجد شيئ يمكن ان يكون أكثر مساواة من زوج من الخطوط المتوازية.

1614 منشر جون نابيير اكتشافه في اللوغاريتمات, التي تساعد في تبسيط الحسابات.
1637 منشر رينيه ديكارت اكتشافه في الهندسة التحليلية, مقرراً أن الرياضيات هي النموذج الأمثل للتعليل.

منتصف العقد التاسع للقرن السابع عشر الميلادي.نشر كل من السير إسحق نيوتن وجوتفريد ولهلم ليبنتز بصورة مستقلة اكتشافاتهما في حساب التفاصيل والتكامل.

1717 مقام أبراهام شارب بحساب قيمة النسبة التقريبية حتى 72 منزلة عشرية. 1742 موضع كريستين جولدباخ ما عرف بحدسية جولدباخ: وهو أن كل عدد زوجي هو مجموع عددين أوليين. ولا تزال هذه الجملة مفتوحة لعلماء الرياضيات لإثبات صحتها أو خطئها.

1763 مأدخل جسبارت مونيي الهندسة الوصفية وقد كان حتى عام 1795 م يعمل في الاستخبارات العسكرية الفرنسية.

بداية القرن التاسع عشر الميلادي.عمل علماء الرياضيات كارل فريدريك جوس ويانوس بولياي, نقولا لوباشيفسكي, وبشكل مستقل على تطوير هندسات لا إقليدية.

بداية العقد الثالث من القرن التاسع عشر.بدأ تشارلز بباج في تطوير الألات الحاسبة.
1822 مأدخل جين بابتست فورييه تحليل فورييه.

1829 مأخل إفاريست جالوا نظرية الزمر.

1854 منشر جورج بولي نظامه في المنطق الرمزي.

1881 مأدخل جوشياه ويلارد جبس تحليل المتجهات في ثلاثة أبعاد.

أواخر القرن التاسع عشر الميلادي.طور جورج كانتور نظرية المجموعات والنظرية الرياضية للمالانهاية.

1908 مطور إرنست زيرميلو طريقة المسلمات لنظرية المجموعات مستخدماً عبارتين غير معروفتين وسبع مسلمات.

1910 - 1913 منشر ألفرد نورث وايتهيد وبرتراند رسل كتابهما مبادئ الرياضيات وجادلا فبه أن كل الفرضيات الرياضية يمكن استنباطها من عدد قليل من المسلمات.

1912 مبدأ ل. ي. ج. برلور الحركة الحدسية في الرياضيات باعتبار الأعداد الطبيعية الأساس في البنية الرياضية التي يمكن إدراكها حدسياً.

1921 منشر إيمي نوذر طريقة المسلمات للجبر.

بداية الثلاثينيات من القرن العشرين الميلادي.أثبت كورت جودل ان أي نظام من المسلملت يحوي جملاً لا يمكن إثباتها.

1937 مقدم ألان تورنج وصفا ل "آلة تورنج" وهي حاسوب آلي تخيلي يمكن أن يقوم بحل جميع المسائل ذات الصبغة الحسابية.

مع نهاية الخمسينيات وعام 1960 مدخلت الرياضيات الحديثة إلى المدارس في عدة دول.
1974 مطور روجر بنروز تبليطة مكونة من نوعين من المعينات غير متكررة الأنماط. واكتشف فيما بعد أن هذه التبليطات التي تدعي تبليطات بنروز تعكس بنية نوع جديد من المادة المتبلورة وشبه المتبلورة.

سبعينيات القرن العشرينظهرت الحواسيب المبنية على أسس رياضية, واستخدمت في التجارة والصناعة والعلوم.

أوائل رياضية

(1) أوّل من حوّل الكسور العاديّة إلى عشريّة :- أوّل من حوّل الكسور العاديّة إلى كسور عشريّة في علم الحساب هو غياث الدين جمشيد الكاشي قبل عام 840 هجرية/1436 م.
(2) أوّل من استعمل الأسس السالبة :- يعدّ العالم المسلم السموأل المغربي ، وهو عالم اشتهر باختصاصه في علم الحساب ، أوّل من استعمل الأسس السالبة في الرياضيات ، وتوفي هذا العالم الفذّ في بغداد عام 1175م .
(3) أوّل من استخدم الجذر التربيعي :- إن الجذر التربيعي هو أوّل حرف من حروف كلمة جذر، وهو المصطلح الذي أدخله العالم المسلم الرياضي محمد بن موسى الخوارزمي، وأوّل من استعمله للأغراض الحسابية هو العالم أبو الحسن علي بن محمد القلصادي الأندلسي الذي ولد عام 825 هجرية وتوفي سنة 891 هجرية وانتشر هذا الرمز في مختلف لغات العالم .
(4) أوّل من وضع أسس علم الجبر :- أوّل من وضع أسس علم الجبر هو العالم المسلم أبو الحسن محمد بن موسى الخوارزمي ، ولد هذا العبقري الفذّ في بلدة خوارزم بإقليم تركستان في العام 164 هجرية، برع في علم الحساب ووضع فيه كتاباً له أسماه ((الجبر والمقابلة)) شرح فيه قواعد وأسس هذا العلم العام ،تحرف اسمه عند الأوروبيين فأطلقوا عليه (ALGEBRA) أي علم الحساب ، وتوفي –رحمه الله –عام 235 هجرية.
(5) أوّل من أسس علم حساب المثلثات:
يبدو أن الفراعنة القدماء عرفوا حساب المثلثات وساعدهم ذلك على بناء الأهرامات الثلاثة،وظل علم حساب المثلثات نوعاً من أنواع الهندسة ،حتى جاء العرب المسلمون وطوروه ووضعوا الأسس الحديثة له لجعله علماً مستقلاً بذاته ،وكان من أوائل المؤسسين لحساب المثلثات ،أبو عبد الله البتاني والزرقلي ونصير الدين الطوسي.


(6) أوّل من أدخل الصفر في علم الحساب :- أوّل من أدخل الصفر في علم الحساب هو العالم المسلم محمد بن موسى الخوارزمي المتوفى عام 235م. وكان هذا الاكتشاف في علم الحساب نقلة كبيرة في دراسة الأرقام وتغيراً جذرياًّ لمفهوم الرقم .
(7) أوّل من استعمل الرموز في الرياضيات :- أوّل من استعمل الرموز أو المجاهيل في علم الرياضيات هم العرب المسلمون ، فاستعملوا (س) للمجهول الأول ، و (ص) للثاني و (ج) للمعادلات للجذر .. وهكذا .
(8) أوّل رسالة طبعت في أوروبا عن الرياضيات :- أوّل رسالة عن علم الرياضيات طبعت في أوروبا كانت مأخوذة من جداول العالم المسلم أبي عبد الله البتاني ،وقد طبعت هذه الرسالة الأولى عام 1493م في اليونان .
(9) أوّل من أدخل الأرقام الهندية إلى العربية :- إن الأرقام التي نستعملها اليوم في كتابة الأعداد العربية 1،2،3،4،5،… الخ هي أرقام دخيلة استعملها الهنود من قبل العرب بقرون طويلة ، وأول من أدخل هذه الأرقام إلى العربية هو أبو عبد الله محمد بن موسى الخوارزمي عالم الرياضيات .
(10) أوّل معداد يدوي :- قام الصينيون باختراع أوّل معداد يدوي في التاريخ ، واستعانوا به على إجراء العمليات الحسابية وذلك في العام 1000 قبل الميلاد وسموه (( الأبوكس)).
(11) أوّل حاسوب إلكتروني :- تم اختراع أوّل حاسوب إلكتروني يعمل بالكهرباء في عام 1946م بالولايات المتحدة الأمريكية ، وأطلق عليه اسم (إنياك:Eniac ) ، وهو من حواسيب الجيل الأوّل التي تعمل بالصمامات المفرغة وتستهلك قدراً كبيراً من الكهرباء ، وهي تشمل مساحة كبيرة.

الهندسة الحديثة

يمكن إرجاع بدايات الهندسة الحديثة إلى القرن السابع عشر الميلادي، ففي ذلك الوقت ازداد الاتصال بين علماء الرياضيات عما كان عليه في أي وقت منذ أفلاطون، وشرع الفرنسيان رينيه ديكارت وبيير دوفيرما في العمل فيما صار يعرف لاحقاً بالهندسة التحليلية. تربط الهندسة التحليلية بين الجبر والهندسة, فهي تعطي تمثيلاً لمعادلة جبرية بخط مستقيم أو منحنٍ. وتجعل من الممكن التعبير عن منحنيات عدة بمعادلات جبرية, ومثال على ذلك: فإن المعادلة 2س = ص تصف منحنى يسمى القطع المكافئ.

ولقد أوضح ديكارت مبادىء الهندسة التحليلية في كتابه الهندسة عام 1637 م، بينما كان مدخل فيرما للهندسة أقرب للهندسة التحليلية الحديثة. وبما أن فيرما لم يقم بنشر أعماله فإن معظم الناس يُرجعون الفضل إلى ديكارت في اكتشاف الهندسة التحليلية.

نهوض الهندسة اللاإقليدية: في مطلع القرن التاسع عشر الميلادي، اكتشد كل من الألماني كارل فريدرك جاوس والمجري يانوس بولياي والروسي نيكولاي لوباتشيفسكي الهندسة اللاإقليدية كلُّ بصورة مستقلة عن الآخر. ففي محاولاتهم لإثبات مسلمة التوازي لإقليدس؛ توصُّل كل منهم لعدم إمكانية تقديم برهان لها. وقدَّم كل واحد منهم الهندسة الزائدية كأول نموذج لهندسة لاإقليدية. وكثيراً ما يُنسب فضل اكتشاف الهندسة الزائدية إلى لوباتشيفسكي نسبة لأبحاثه المنشورة وبخاصة مقالته حول أسس الهندسة (1829 م).


ولقد ظلت الهندسة اللاإقليدية خارج إطار الهندسة التقليدية حتى منتصف القرن التاسع عشر الميلادي. ففي ذلك الحين بدأ جورج فريدريك برنارد ريمان معالجة الهندسة اللاإقليدية. وفي محاضرة له عام 1854، ناقش ريمان فكرة النظر إلى الهندسة على أنها دراسة أشياء غير معينة لأي عدد من الأبعاد في أي عدد من الفضاءات. وقد جعلت نظرته للهندسة دراسة عامة للفضاءات المنحنية نظرية النسبية لأينشتاني أمراً ممكناً.

قادت الاكتشافات الرياضية في القرن التاسع عشر الميلادي إلى تطوير مداخل أخرى إلى الهندسة، منها هندسة التحويلات التي تبحث في خصائص الأشكال الهندسية التي تظل ثابتة عندما تتعرض الأشكال إلى تحويلات معيَّنة (تغيير في الموضع). ويُعني أحد ضروب هندسة التحويلات ويسمى الطوبولوجيا، بدراسة الخصائص الهندسية التي لا تتغير عند تشويه الأشكال أثناء تعرُّضها إلى عمليات الثنيْ أو المطِّ أو القولبة. وتستأثر هندسات التحويلات بحيز كبير من النشاط البحثي في الرياضيات.


النظام العشري

طريقةٌ لكتابة الأعداد، إذ يمكن كتابة أي عدد، سواء كان عدداً متناهي الضخامة أو كسراً بالغ الضآلة، في النظام العشري باستخدام عشرة رموز أساسية فقط هي 1، 2، 3، 4، 5، 6د 7، 8، 9، 0، وتعتمد قيمة أي رمز من هذه الرموز العشرة على خانته في العدد المكتوب. فلرمز 28 مثلاً قيمتان مختلفتان تماماً في العددين 482 و835، لأن الرمز 8 يقع في خانتين مختلفتين في هذين العددين. ونظراً لأن قيمة الرمز تعتمد على المكان الذي يشغله في أي عدد، فإن النظام العشري يسمى نظام قيمة الخانة.


يُسَمّى النظام العشري كذلك بالنظام العربي الهندي، إذ تم تطوير هذا النظام على يد علماء الرياضيات الهنود قبل أكثر من ألفي سنة، وقد تعلم العرب هذا النظام بعد فتحهم لأجزاء من الهند في القرن الثامن الميلادي، وتبنوه ونشروا استخدامه على نطاق واسع في الدولة العربية الإسلامية بما فيها البلاد العربية في آسيا إفريقيا وفي أسبانيا.


ويمكن التعبير عن الأعداد الكبيرة بسهولة في النظام العشري عن طريق استخدام الأسّ أو ما يسمى كذلك بالدليل أو القوة. والأس هو رمز يكتب فوق العدد وإلى اليسار منه قليلاً، ويدل على عدد مرّات ضرب العدد في نفسه. ففي الشكل 106 على سبيل المثال يشير الأس6 إلى أنه ينبغي ضرب ست عشرات في بعضها بعضاً أي ضرب العدد عشرة في نفسه ست مرات ويُقرأ الشكل 106 كما يلي:
عشرة للقوة أو عشرة أس ستة.


المربعات والجذور التربيعية

مربّع العدد هو العدد الناتج عن ضرب العدد بنفسه (مساحة المربع هي حاصل ضرب طول الضلع بنفسه) . مربع 5، ويكتب 2، يساوي 52. العملية المعكوسة هي أخذ الجذر التربيعي لعدد معيّن، أي إيجاد العدد الذي إذا ضرب بنفسه يعطي هذا العدد المعيّن، إن مربَّع عدد صحيح يعطي عدداً صحيحاً، إلا أن الجذر التربيعي لعدد صحيح كثيراً ما لا يكون عدداً صحيحاً. فمثلاً الجذر التربيعي ل2 يقع ما بين 1,4142 و1,4143. فالجذر التربيعي للرقم 2 لا يمكن تحديده بدقة، لذلك يسمى «عدداً أصمّاً».


المجموعَات وَالزُمر

كان جورج كانتور (1845 1918) أول من قام بدراسة نظرية المجموعات الرياضية، ثم جاء بعده ارنست زرميلو (1871 1956) فنظم هذه النظرية.


فكرة المجموعة هي حجر الزاوية في الرياضيات. فهي جملة من الأشياء لها وصف أو تعريف مشترك تدرج في اطار واحد، كما هي الحال مثلاً في تعريف المحيطات بالقول: هي الهادى، الأطلسي، الهندي، المتجمد الشمالي، المتجمد الجنوبي. هذا النوع من المجموعات يكوّن مجموعة متناهية، لأن عدد وحداته متناه ومعروف، وهو خمسة في هذا المثل. أما مجموعة الأعداد المستعملة للعدّ (مثل 1 و2 و3... الخ)، ويرمز إليها بحرف (ع)، فهي غير متناهية، لأنه ليس بامكاننا معرفة عدد وحداتها.


مجموعة الأعداد الطبيعية يرمز إليها بحرف ز+ = (1، 2، 3، ...)، ووحداتها هي العناصر ذاتها الموجودة في مجموعة أرقام العدّ؛ لذلك نقول أن المجموعتين ع و ز+ متساويتان. لكن إذا تعادل عدد العناصر فقط في مجموعتين، نقول انهما متكافئتان: فالمجموعة (أزرق، اخضر، أصفر، برتقالي، أحمر) متكافئة مع مجموعة المحيطات، لأن لكل منهما خمسة عناصر.


يمكن فهم لغة المجموعات بدراسة مثل خاص. فالمجموعة العامة، أي مجموعة جميع العناصر موضوع البحث، يمكن تقسيمها إلى ما يسمّى مجموعتين فرعيتين، منفصلتين، غير متراكبتين. إذا لم يكن ثمة أكثر من مجموعتين من هذا الصنف، تسمّى احداهما «متمّمة» للاخرى. أما مجموعة الفيلة العائشة في القطب الشمالي، فهي مثل عن المجموعة المسمّاة «الفارغة» أو «المجموعة الصفر»، لأنها لا تحتوي على وحدات قط. تكتب المجموعة الصفر بالرمز ئ مثلاً لا يوجد تقاطع بين المجموعتين أو و ب أو بين ج و د، لذلك فالتقاطع يعادل ئ. ان مفاهيم «التقسيم»، «المتمّم»، «التقاطع»، «الاتحاد» هي اساسية في عملية تصنيف المعلومات.


عن الشبكات /2) ينشأ حاصل الضرب الديكارتي لمجموعتين. يتم ذلك بايجاد جميع العناصر الممكن ترتيبها ازواجاً، وبأخذ عنصر واحد من كل مجموعة. كلمة ديكارتي هي نسبة لرينيه ديكارت (1596 1650) الذي روّج مبدأ الاحداثيات.


اللوغاريثمات

قام الرياضي السكوتلاندي جون نابير (1550 1617) بنشر كتابه «وصف قاعدة اللوغاريثمات العجيبة» عام 1614 فافتتح به عهد اللوغاريثمات.


استعمل نابير تسعة قضبان مربعة المقطع (أ) موضوعة على طبق. رقّم المقطع الأعلى منها من 1 إلى 9، وقسّم المقاطع السفلى من كل قضيب تقسيماً قطرياً، واضعاً عليها متواليات حسابية بالطريقة التالية: على القضيب المرقّم 1 اعداد تزداد بنسبة 1 (1، 2، 3، 4، الخ)، وعلى الثاني اعداد تزداد بنسة 2 (2، 4، 6، 8، الخ) وعلى الثالث اعداد تزداد بنسبة 3 (3، 6، 9، الخ) وهكذا حتى القضيب التاسع (9، 18، 27، 36، الخ) . وقد درّج الجوانب الثلاثة الأخرى لمقاطع القضبان بالطريقة عينها، بحيث اصبح كل عدد من 1 إلى 9 ممثّلاً في 4 مواضع في مكان ما من المجموعة. لايجاد مضاعفات عدد معيّن، مثلاً: مضاعفات 1572 تؤخذ القضبان 1، 5، 7، 2 من الطبق وتوضع جنباً إلى جنب في مكان آخر (ب) . لحساب 3× 1572 يؤخذ الصف الثالث من قطع القضيب كما في (ت)، ثم تجمع الأرقام قطرياً كما هو مبيّن لتعطي الحاصل المطلوب وهو 4716؛ ولضرب 8× 1572 تجرى العملية عينها باستخدام الصف الثامن كما في (ث)، فنحصل على 12576 وهو العدد الحاصل المطلوب أيضاً. وإذا اردنا الضرب بعدد أكبر (38 مثلاً)، يكفي أن نجمع الحواصل السابقة للضرب ب3 وب8 أي 47160 (الذي أضفنا إليه صفراً لأننا نضرب الآن ب30 لا ب3) و12576، فنحصل على 59736.



الكسور والتناسُب والنُّسَب

ثلاثة أسباع، 3/7، تعني قسمة 3 على 7، وهي كسر. العدد الاسفل يُسمى المخرج، ويمثل عدد الأجزاء المنقسم اليها الشيء. العدد الأَعلى يُسمى الصورة، ويمثل العدد المعيّن من الأجزاء المأخوزة من المخرج.


أما جمع الكسور وطرحها، فهما أكثر تعقيداً. ينبغي أولاً تحويل جميع المخارج إلى ما يسمَّى بالقاسم المشترك الأدنى. ثم تجمع الصور أو تطرح حسب المطلوب. وتكون النتيجة كسراً مخرجة القاسم المشترك الأدنى. ثم يجرى تبسيط هذا الكسر إذا أمكن (4، 5، 6) .


الكسور العشرية

في النظام العشري، تقل قيمة الخانة بمقدار عشرة أضعاف كلما انتقلنا من خانة إلى أخرى على اليمين من خانة الآحاد. ففي الخانة الأولى على يمين خانة الآحاد ينقسم الواحد الصحيح إلى عشرة أقسام متساوية تُسَمّى الأعشار وفي الخانة الثانية إلى اليمين ينقسم كل عشر بدوره إلى عشرة أقسام متساوية. يسمى كل منها واحد من المائة وهكذا. وأسماء الخانات على اليمين من خانة الآحاد هي نفس أسماء الخانات المناظرة على اليسار مسبوقة بالكلمتين واحد من، مثلاً خانة واحد من عشرة، خانة واحد من مائة، واحد من ألف .. وهكذا.


جمع وطرح الأعداد العشرية: ولإمكان جمع وطرح أعداد ذات كسور عشرية، اكتب رقماً تحت الآخر بحيث تكون الفاصلة العشرية في الرقم السفلي تحت الفاصلة العشرية في الرقم العلوي، بغض النظر عما إذا كان أحد الرقمين أطول من اليسار أو اليمين من الرقم الآخر إذ يمكن وضع أصفار في الخانات التي لا توجد فيها أرقام. ثم اجمع واطرح الأرقام الواقعة في عمود واحد بعضها تحت بعض.


بشكل عام فعند ضرب أي عدد في كسر أقل من الواحد يتم إزاحة كل رقم في العدد إلى اليمين بعدد الخانات التي يكون فيها الكسر أصغر من الواحد الصحيح. ولهذا فالقاعدة عند ضرب أي عدد بعدد كسري هي إجراء عملية الضرب كالمعتاد، ثم جمع عدد الخانات الكسرية في كلا الرقمين، ويكون ناتج الجمع هو عدد الخانات الكسرية في حاصل الضرب.
وللقسمة على عدد يشمل خانات أصغر من الواحد (أي يشمل كسوراً عشرية) اكتب المقسوم والمقسوم عليه بصيغة القسمة المطولة.


75,6 1,08 حرك الفاصلة العشرية في العدد المقسوم عليه إلى أقصى اليمين، ثم حرك الفاصلة في العدد المقسوم إلى اليمين (بنفس عدد الخانات)، مع إضافة أصفار إذا استدعى الأمر زيادة عدد الخانات في العدد المقسوم. وبعد إجراء عملية القسمة كالمعتاد، تأكد من وضع فاصلة عشرية في ناتج القسمة فوق الفاصلة في العدد المقسوم.
الخطوة 1 الخطوة 2 الخطوة3
75,6 1,08 75,60 1,08 75,60 1,08
وهذه القاعدة صحيحة لأن كل ما عملناه حقيقة هو ضرب المسألة في 1 الأمر الذي لن يؤثر على النتيجة.
75,6 / 1,08 = 75,6 / 1,08 × 1 = 75,6 / 1,08 × 100 / 100 = 7560 / 108 = 70

الرياضيات وعلومها ومؤلفاتها


تواريخ مهمة في الرياضيات

الرياضيات من العلوم التي برع فيها العرب والمسلمون، وأضافوا إليها إضافات كانت من جملة أسباب تطور هذا العلم في العصر الحديث. فقد تقدم هذا العلم بفضل العرب خلال القرنين التاسع والعاشر للميلاد. فبعد أن اطلعوا على حساب الهنود أخذوا عنه نظام الترقيم بدلاً عن نظام الترقيم على حساب الجُمَّل. .

وكان الحساب العربي ينطلق من ثلاثة أصول: حساب اليد، ويدعى أيضًا حساب العقود. لأن الحاسب كان يعقد أصابعه حين العد، وقد يكون خليطًا من المعارف الحسابية التي أخذوها عن الفرس والروم. وحساب موروث الترجمة، وهو الذي نقل عن الإغريق إبان حركة الترجمة ويتمثل في معارف متفرقة عن الجبر وخصائص الأعداد. والحساب الهندي، الذي انتقل عبر عدة قنوات. أخذ العرب أرقام هذا الحساب دون أشكالها.

وتبنّى العرب سلسلتيْن من بين عدد كبير من الأشكال عرفت إحداهما بالأرقام الهندية وهي 1، 2، 3، 4، 5، 6، 7، 8، 9. وعُرِفت الأخرى بالأرقام العربية 9 ،8 ،7 ،6 ،5 ،4 ،3 ،2 ،1. انتشرت الأخيرة في بلاد المغرب العربي والأندلس ومنها انتشرت إلى أوروبا من خلال المعاملات التجارية والرحلات والسفارات التي كانت بين الخلفاء وملوك بعض دول أوروبا.

لم تعرف الأرقام العربية بهذا الاسم في بادئ الأمر، بل كانت تسمى الأرقام الغبارية. والأصل في تسميتها بهذا الاسم أن الهنود كانوا يأخذون غبارًا لطيفًا ويبسطونه على لوح مستوٍ من الخشب أو خلافه ويرسمون عليه الأرقام التي يحتاجون إليها في معاملاتهم الحسابية والتجارية.

والسلسلة الغبارية (العربية) مرتبة على أساس الزوايا؛ كما في بعض الساعات الرقمية أو الحواسيب في هذه الأيام. فالرقم واحد به زاوية واحدة واثنان زاويتان وهكذا
كما اشتغل العرب بالجبر وبرعوا في ذلك وربطوه بالأشكال الهندسية، وهم أول من أطلق لفظة جبر على هذا العلم، وهم أول من ألف فيه بطريقة علمية منظمة، كما توسعوا في حساب المثلثات وبحوث النسبة وقسموها إلى ثلاثة أقسام: عددية وهندسية وتأليفية. كما حلوا بعض معادلات الدرجة الأولى بطريقة حساب الخطأين وكذلك معادلات الدرجة الثالثة، وأحلوا الجيوب محل الأوتار، وأتوا بنظريات أساسية جديدة لحل مثلثات الأضلاع. وإلى العرب يرجع الفضل في وضع علم المثلثات بشكل علمي منظم مستقل عن الفلك مما حدا بالكثيرين إلى اعتباره علمًا عربياً كما اعتبروا الهندسة علمًا يونانياً.

الحساب. استخدم العرب منذ الجاهلية إلى صدر العصر العباسي طريقتين للعد الحسابي؛ فكانوا إذا أرادوا أن يسجلوا عددًا في البيع والشراء أو الإرث أو الكيل وخلافها، دوّنوه كتابة بالحروف هكذا تسعمائة وخمسون دينارًا أو بحساب الجمّل هكذا (ظن) حيث قيمة الظاء في هذا الحساب 900 والنون 50. وكان العرب قد اقتبسوا فكرة حساب الجمّل من جيرانهم أو من البلاد التي فتحوها، وهذا الحساب اختراع ساميّ الأصل. .

كان الهنود يستعملون سونيا وتعني الفراغ أو الخواء لتدل على كلمة صفر، وكان العرب يستخدمون هذا اللفظ (صفر) للدلالة على معنى الخلوّ منذ أمد بعيد. ومن ذلك قولهم صفر اليدين؛ أي خالي اليدين ومنها صَفَر الشهر المعروف. وقد كان الصِّفر العربي يرسم في الأصل حلقة صغيرة وسطها فراغ وبقيت على ذلك في المغرب الإسلامي والأندلس، بينما انطمست في المشرق فصارت نقطة للتفريق بين الصفر والرقم 5 (خمسة). وقد ظهرت الأرقام والصفر المرسوم على هيئة نقطة في مؤلفات عربية تعود إلى سنة 274ه، 787م وذلك قبل أن تظهر في الكتب الهندية.

تقوم الأرقام العربية على النظام العشري والنظام الكسري الذي أوجده العرب واستخدموه في حساباتهم ومعاملاتهم منذ وقت مبكر. فقد استعمله إبراهيم الأقليدسي في أوائل القرن الرابع الهجري. وباستخدام الأرقام والصفر سهل حل المسائل الحسابية وتدوين الكسور العشرية والعادية وبناء المعادلات الرياضية من مختلف الدرجات وحلها.

قسّم العرب الحساب العملي إلى غباري، وقصدوا به ذلك الحساب الذي يحتاج إلى أدوات لاستخراج نتائجه؛ كالقلم والورق أو التخت (اللوح السبورة). وهوائي وهو الذي تجرى عملياته في الذهن ولا يحتاج إلى أدوات. وأكثر الناس استخدامًا له التُّجار والمتعاملون معهم في الحساب الفوري. وبالإضافة للحساب الغباري والهوائي، قسّموا الحساب إلى بابيْن الأول يشمل الأرقام الصحيحة، والثاني يشمل الكسور. وذكروا تحت كل منهما فروعًا تختص بالعمليات التي يتناولها كل منهما؛ من ذلك الجمع والتضعيف والضرب، والتنصيف والتفريق (الطرح) والقسمة والتجذير أو استخراج الجذور.

قسّم العرب الأعداد أيضًا إلى عاد (واحد) ومعدود (بقية الأعداد). وكان هذا من وحي فلسفة إخوان الصفا التي تقول: ¸الواحد أصل الأعداد ومنشؤها؛ تأتي جميعها منه وهو مخالف لها. وتنشأ الأعداد من الواحد صعودًا: 1، 2، 3، 4… إلخ؛ وهبوطًا 1، 1/2، 1/4، 1/8، 1/16 … إلخ. كما قسّم الرياضيون العرب الأعداد إلى أزواج (زوجية) وأفراد (فردية) وبيّنوا أنواعها بالتفصيل، وقسّموا العدد إلى أربعة أنواع: تام، وزائد، وناقص، ومتحاب؛ فالتام هو الذي إذا جمعت عوامله فحاصل الجمع يساوي العدد نفسه؛ فمثلاً عوامل 28 هي: 1، 2، 4، 7، 14 فإذا جُمعت صارت 28. والزائد هو الذي إذا جمعت عوامله كان حاصل الجمع أكبر من العدد نفسه؛ فمثلاً عوامل العدد 12 هي: 1، 2، 3، 4، 6، فإذا جُمعت صارت 16؛ أي أكبر من العدد 12. والناقص هو الذي إذا جُمعت عوامله كان حاصل الجمع أقل من العدد فمثلاً عوامل العدد 10 هي: 1، 2، 5 فإذا جُمعت صارت 8؛ أي أقل من العدد 10. أما الأعداد المتحابة فهي أزواج من الأعداد يكون مجموع عوامل أحدها يساوي الثاني، ومجموع عوامل الثاني يساوي الأول؛ فمثلاً العددان 220 و284 متحابان لأن عوامل 220 هي: 1، 2، 4، 5، 10، 11، 20، 22، 44، 55، 110 وحاصل جمعها 284، وعوامل 284 هي: 1، 2، 4، 71، 142 وحاصل جمعهما 220.

طريقة الخوارزمي في اختراعه للأرقام العربية هي لكل عدد زاوية بحيث رقم واحد زاوية واحدة ورقم اثنين زاويتين..وهكذا..والصفر بدون زوايا

http://stooor.a.googlepages.com/121212.jpg


كان العرب أول من اكتشف علامة الكسر العشري، وكان أول ذكر لها في كتاب غياث الدين جمشيد الكاشي (ت نحو 828ه، 1424م) بعنوان كتاب مفتاح الحساب، وكان ذلك قبل 175 سنة من ستيفن الذي ينسب له هذا الاكتشاف. وقد ذكر الكاشي النسبة بين محيط الدائرة وقطرها (ط) بالكسر العشري وذلك في كتابه الرسالة المحيطة، وقد أعطى قيمة 2ط لستة عشر رقمًا عشرياً كما يلي:



أي أن ط = 3,1415925358979325

ولم يسبقه أحد في الوصول إلى هذه النسبة الدقيقة.

توصل الرياضيون العرب والمسلمون إلى طرق ميسّرة لإجراء شتى العمليات الحسابية؛ ففي الجمع مثلاً كانت لديهم طرق مختلفة لجمع الأعداد، بعضها يمكن استخدامه الآن في المدارس الابتدائية، وتتلخص في زيادة خانة قبل المجموع تسمى خانة المحفوظات،
وفي القسمة والضرب استخدموا طرقًا عديدة يكاد بعضها يطابق ما نستخدمه اليوم. ويقول ليوناردو فيبوناتشي، أحد علماء الرياضيات الإيطاليين في القرن السابع الهجري، الثالث عشر الميلادي، أنه تعلّم طريقة القسمة لأول مرة من أساتذته علماء العرب والمسلمين في صقلية. وأن تطويرهم لطريقة القسمة تنم عن خبرة رياضية عظيمة لا يستهان بها. أما في الضرب فقد ابتكروا طرقًا عديدة بعضها فيه الطرافة أو ما يمكن أن نطلق عليه رياضيات التسلية عند العرب. من أطرف هذه الطرق وأمتعها طريقة الشبكة وقد وردت في كتاب خلاصة الحساب لبهاء الدين العاملي (ت 1031ه، 1622م). فمثلاً لضرب 235 × 47 نتبع ما يلي:

نرسم مستطيلاً مقسمًا إلى 3 خانات أفقية وخانتيْن رأسيتيْن، نضع الرقم 235 أعلى المستطيل على الخانات الأفقية كما في الشكل، ونضع العدد 47 على يسار الخانتين الرأسيتيْن. ثم نضرب العدد 7 × 2 ونضع الحاصل 14 في الخانة الأولى تحت العدد 2، ونضرب 7 × 3 ونضع الحاصل 21 في الخانة الثانية، ثم نضرب 7 × 5 ونضع الحاصل 35 في الخانة الثالثة. كذلك نضرب ال 4 في كل من 2، 3 و5 ونضع حاصل ضرب كل منها في خانات الصف الثاني، وبجمع الأعداد نحصل على حاصل الضرب وهو 11,045.
وتوجد طرق كثيرة غير هذه، فيها المتعة والصعوبة التي يعشقها المهتمون بالرياضيات كان يطلق عليها العرب اسم الملح الاختصارية.
بعد أن توسع العرب في بحوث النسبة استفادوا من الفرع الثالث فيها، وهو النسبة التأليفية، واستخرجوا منها الأنغام والألحان. من أمثال ذلك ما أورده إخوان الصفا ¸نغمة الزير رقيق خفيف، ونغمة اليمّ غليظ ثقيل؛ والرقيق ضد الغليظ، والخفيف ضد الثقيل وهما متباينان متنافران لا يجتمعان ولا يأتلفان إلا بمركب ومؤلف يؤلفهما، ومتى لا يكون التأليف على النسبة لا يمتزجان ولا يتحدان، ولا يستلذهما السمع، فمتى ألِّفا على النسبة ائتلفا وصارا كنغمة واحدة لا يميز السمع بينهما، وتستلذهما الطبيعة، وتسر بهما النفس·. وعدّ العرب الموسيقى من بين العلوم الرياضية، وكانت الرياضيات عندهم فرعًا من فروع الفلسفة، ويبدو ذلك جلياً عند ابن خلدون إذ يقول في المقدمة ¸وعلم الموسيقى هو معرفة نسب الأصوات والنغم بعضها من بعض، وتقديرها بالعدد، وثمرته معرفة تلاحين الغناء·.
كان إخوان الصفا من أفضل من تناول موضوعات التناسب وكيفية استخراج المجهول بوساطتها، بل ربطوا بينها وبين الميكانيكا وسائر فروع علم الفيزياء والمثلثات والفلك فإن من فوائد النسبة لديهم ¸… ما يظهر في الأبعاد والأثقال من المنافع… ومن أمثال ذلك ما يظهر في ظل الأشخاص من التناسب بينها، وذلك أن كل شخص مستوي القَدّ، منتصب القوام، فإن له ظلا، وأن نسبة طول ظل ذلك الشخص إلى طول قامته في جميع الأوقات كنسبة جيب الارتفاع في ذلك إلى جيب تمام الارتفاع سواء. وهذا لا يعرفه إلا المهندسون أو من يحل الزيج؛ وهكذا توجد هذه النسبة في جر الثقيل بالخفيف، وفي تحريك المحرك زمانًا طويلاً بلا ثقل ثقيل. وذلك ما يظهر أيضًا في الأجسام الطافية فوق الماء ما بين أثقالها ومقعر أجرامها في الماء من التناسب؛ وذلك أن كل جسم يطفو فوق الماء، فإن مكانه المقعر يسع من الماء بمقدار وزنه سواء. فإن كان ذلك الجسم لا يسع مقعره بوزنه من الماء، فإن ذلك الجسم يرسب في الماء ولا يطفو وإن كان ذلك المقعر يسع بوزنه من الماء سواء؛ فإن ذلك الجسم لا يرسب في الماء، ولا يبقى منه شيء ناتئ عن الماء، بل يبقى سطحه مستويًا مع سطح الماء سواء. وكل جسمين طافيين فوق الماء، فإن نسبة سعة مقعر أحدهما إلى الآخر كنسبة ثقل أحدهما إلى الآخر سواء. وهذه الأشياء التي ذكرناها يعرفها كل من كان يتعاطى صناعة الحركات أو كان عالماً بمراكز الأثقال والأفلاك والأجرام والأبعاد·.

كانت كتب الحساب التطبيقية زاخرة بالأمثلة والتمارين الرياضية، وكانت تتناول مسائل واقعية معمولاً بها آنذاك؛ فمنها ما يتناول المعاملات التجارية ومنها ما يتناول الزكاة والصدقة وتقسيم الغنائم ورواتب الجند. كما تطرقوا إلى البريد واللحاق به وإلى طرق البيع والشراء وهذه ميزة في مؤلفاتهم كلها دون استثناء. وعرفوا المتواليات الحسابية والهندسية بأنواعها، فذكروا قوانين خاصة لجمعها. كما بنوا قواعد لاستخراج الجذور ولجمع المربعات المتوالية والمكعبات، وبرهنوا على صحتها، وتوصلوا إلى نتائج طريفة في ذلك.

استخرج رياضيو العرب والمسلمين المجاهيل العددية عن طريق التحليل بطريقتين أخرييْن قلما يعرفهما شخص في العصر الحديث سوى المتخصصين في الرياضيات. وهاتان الطريقتان هما حساب الخطأين، والتحليل والتعاكس. وكانت لهم مؤلفات في ذلك منها كتاب الخطأين لأبي كامل الحاسب المصري وكتاب حساب الخطأين ليعقوب بن محمد الرازي وغيرهما. وكانت هاتان الطريقتان شائعتين عند العرب، وأكثر استخدامًا من غيرهما. وإليك هذين المثالين: الأول يوضح طريقة الحساب والخطأ، والثاني يوضح طريقة الوصول إلى المجهول بطريقة التحليل والتعاكس.

أوجد العدد الذي إذا أضيف إليه ثلثاه وثلاثة كان الناتج 18.

الخطوة الأولى: افرض المجهول ما شئت وسمه المفروض الأول، ثم تصرف فيه بحسب السؤال، فإن كان مطابقًا فهو المطلوب، وإن لم يكن كذلك فإن الخطأ بالزيادة أو النقصان فهو الخطأ الأول.

الخطوة الثانية: افرض مجهولاً آخر وسمه المفروض الثاني، فإن أخطأ حصل الخطأ الثاني.

الخطوة الثالثة: اضرب المفروض الأول في الخطأ الثاني، وسمه المحفوظ الأول.

الخطوة الرابعة: اضرب المفروض الثاني في الخطأ الأول، وسمه المحفوظ الثاني.

الخطوة الخامسة: إذا كان الخطآن من زائدين أو ناقصين فاقسم الفرق بين المحفوظين على الفرق بين الخطأين، وإن اختلفا فمجموع المحفوظين على مجموع الخطأين لتحصل على المجهول.

لحل المسألة خذ المفروض الأول: 3 0 إذا تصرفنا فيه بحسب السؤال يكون:



… يكون الخطأ الأول 18 - 8 = 10 ناقص

خذ المفروض الثاني: 6 0 إذا تصرفنا فيه بحسب السؤال يكون:



… يكون الخطأ الثاني 18 - 13 = 5 ناقص

إذن يكون المحفوظ الأول = 3 × 5 = 15

ويكون المحفوظ الثاني = 6 ×10 = 60

الفرق بين 60 و 15 = 45 والفرق بين الخطأين هو 10 - 5 = 5

… الجواب 45/5 = 9

اما استخراج المجاهيل بطريقة التحليل والتعاكس فتستند على العمل بعكس ما أعطاه السائل فإن ضعّف فنصِّف، وإن زاد فانقص، وإن ضرب فاقسم أو جذّر فربّع أو عكس فاعكس مبتدئًا من آخر السؤال. وقد وردت هذه المسألة في كتاب بهاء الدين العاملي: ¸عدد ضرب في نفسه وزيد على الحاصل اثنان وضعف وزيد على الحاصل ثلاثة دراهم وقسم المجتمع (المجموع) على خمسة وضرب الخارج في عشرة حصل خمسون·.

نبدأ بآخر السؤال فنقسم 50 - 10 ثم نضرب 5 في مثلها؛ أي 5 × 5 = 25 وننقص من 25 العدد 3 فيكون الباقي 22 ومن نصف هذا العدد ننقص 2؛ أي 11 - 2 = 9 فالجواب يكون الجذر التربيعي ل 9 أي 3.

اشتغل العرب بما يمكن أن نطلق عليه رياضيات التسلية؛ فقد برعوا في تقديم المسائل الرياضية في صورة ألغاز، كما اشتغلوا بالمربعات السحرية. وأول من بحث في هذا النوع ثابت بن قرة. وظهر كثيرًا في مصنفات الرياضيين الآخرين، وكانوا يطلقون على المربعات السحرية الأشكال الترابية.

من هذه المربعات ما أثبته إخوان الصفا في رسائلهم؛ وهي المربعات التي كيفما عدت كانت الجملة 15. وهي تتكون من مربع كبير يضم في داخله تسعة مربعات لتشمل الأرقام من 1 إلى 9
ومن ذلك أيضًا المربع الذي يضم في داخله 16 مربعًا صغيرًا تشتمل الأرقام من 1 إلى 16 ومن خاصيته أنه كيفما عدّ كانت الجملة 34
كما يوجد شكل به 36 مربعًا كيفما عدّ كانت الجملة 101، وآخر ذو 64 مربعًا كيفما عدّ كانت الجملة 260 وآخر ذو 81 مربعًا كيفما عدّ كانت الجملة 369
الجبر. عرف ابن خلدون علم الجبر بأنه من فروع الرياضيات، وأنه صناعة يستخرج بها العدد المجهول من العدد المعلوم إذا كان بينهما صلة تقتضي ذلك. وكان هذا العلم معروفًا لدى الأمم الأخرى؛ فالإغريق مثلاً كانوا قد توصلوا إلى حل معادلات من الدرجة الثانية، غير أنهم كانوا يجهلون الرموز الجبرية، وكانت طرقهم في ذلك معقدة وغير موحدة. ولم يصبح الجبر علمًا خالصًا إلا بعد أن اشتغل به العرب والمسلمون. كما أن الفضل يعود إلى الرياضيين العرب والمسلمين مثل ابن يونس والحراني وغيرهما في التمهيد لابتكار اللوغاريثمات.

عرف العرب قبل الإسلام نوعًا من الجبر الذي كان يرد في طرائفهم وأشعارهم من قبيل الألغاز، إلا أنهم لم يدونوا ذلك لاعتمادهم على الرواية الشفهية في ضبط كل أمورهم. وقد كثر ذكر المعادلات ذات المجهول الواحد في أشعارهم كقول زرقاء اليمامة:
ليت الحمام ليه إلى حمامتيه
أو نصفه فقديه صار الحمام ميه
وصاغ النابغة هذا اللغز في أبيات أخرى فجاءت كما يلي:
واحكم كحكم فتاة الحي إذ نظرت إلى حمامٍ سراعٍ وارد الثّمدِ
قالت ألا لَيْتما هذا الحمام لنا إلى حمامتنا مع نصفه فقدِ
فحَسَّبوه فألفَوْه كما ذكرت تسعًا وتسعين لم تنقص ولم تزد
فكملت مائة فيها حمامتها وأسرعت حسبة في ذلك العدد!
وأعظم رياضيي القرن الثالث الهجري، التاسع الميلادي هو محمد بن موسى الخوارزمي، وهو أول من سمّى علم الجبر جبرًا وأول من ألّف في هذا العلم بتشجيع من الخليفة المأمون؛ فصنّف فيه كتابه المشهور الجبر والمقابلة. ويشهد على عظمة الخوارزمي أن علم الجبر لم يتقدم خلال القرون الثلاثة التي تلت وفاته تقدمًا يذكر.
لم يستخدم الرياضيون الرموز في بادئ الأمر، وإنما جاءت هذه الرموز في حقبة متأخرة نسبياً وعلى يد الرياضيين العرب أنفسهم. فقد بدأت رموز هذا العلم في شكل مصطلحات لغوية ثم تطورت؛ ومن ذلك استخدام الخوارزمي ومن جاء بعده بقليل المصطلحات الآتية:

الجبر: نقل الحدود المنفية إلى الجانب الآخر من المعادلة.

المقابلة: توحيد الحدود المتماثلة.

الحد: الكمية المعبر عنها في المعادلة بعدد معلوم أو مجهول.

العدد الأصم: الذي لا ينجذر إلا بكسر.

الجذر: كل شيء مضروب في نفسه بدءًا من الواحد إلى أعلى وما دونه من كسور. وهو الحد المجهول في المعادلة ونعبر عنه حالياً بالرمز س، وأطلقوا عليه أيضًا مصطلح الشيء.

جزء الجذر (الشيء): معكوس الجذر؛ أي 1/س .

المال: كل ما اجتمع من الجذر المضروب في نفسه (س²).

جزء المال: معكوس المال أي 1/س.

العدد المفرد: كل ملفوظ به من العدد بلا نسبة إلى جذور ولا إلى مال.

قسم الخوارزمي المعادلات إلى ستة أقسام كالتالي:

الأموال التي تعدل (تعادل) جذورًا ويقابلها بالرموز الحالية: م س² = ب س.

الأموال التي تعدل عددًا معلومًا ويقابلها بالرموز الحالية: م س² = ح.

الجذور التي تعدل عددًا معلومًا ويقابلها بالرموز الحالية: ب س = ح.

الأموال والجذور التي تعدل عددًا معلومًا ويقابلها بالرموز الحالية: م س² + ب س = ح .

الجذور والأعداد المعلومة التي تعدل أموالاً ويقابلها بالرموز الحالية: ب س + ح = مس² .

الأموال والأعداد التي تعدل جذورًا ويقابلها بالرموز الحالية: م س² + ح = ب س.

ثم تطورت هذه المصطلحات لتحل محلها رموز سهلت استخدام هذا العلم وقادته للتطور، ومن هذه الرموز ما استخدمه القلصادي (ت 891ه، 1486م) فقد استخدم العلامات التالية:

ج : لتدل على الجذر؛ وهو الحرف الأول من كلمة جذر.

ش : لتدل على المجهول؛ وهو الحرف الأول من كلمة شيء (س).

م : لتدل على مربع المجهول؛ وهو الحرف الأول من كلمة مال (س²).

ك : لتدل على مكعب المجهول؛ وهو من حروف كلمة مكعب (س§).

ل : لتدل على المساواة بين الكميتيْن (ل)، وهو من حروف كلمة يعدل.

… ثلاث نقاط للدلالة على النسبة.

المعادلات. يعد حل المعادلات التكعيبية بوساطة قطوع المخروط من أعظم الأعمال التي أسهم بها الرياضيون العرب في هذا العلم. وقد طبقوا نظرياتهم فيها على حلول بعض المسائل الصعبة التي يؤدي حلها إلى معادلات تكعيبية. ومن جملة المسائل التي وردت في تمريناتهم التطبيقية يتبين أنهم كانوا يعرفون حل المعادلات من الدرجة الثانية، كما عرفوا أن لهذه المعادلات جذريْن قاموا باستخراجهما إن كانا موجبين. وتحققوا من الحالة التي يكون فيها الحل مستحيلاً في نطاق الأعداد الحقيقية.

فالخوارزمي يقول في هذا الصدد في كتاب الجبر والمقابلة ¸… واعلم أنك إذا نصفت الأجذار وضربتها في مثلها فكان يبلغ ذلك أقل من الدراهم التي مع المال فالمسألة مستحيلة… وإن كان مثل الدراهم بعينها فجذر المال مثل نصف الأجذار سواء، لا زيادة ولا نقصان…·.

حل العرب معادلات من قوى أعلى؛ فعلى سبيل المثال نجد أن محمد بن الحسن الكرخي حل معادلات على النمط التالي في كتابه الفخري:

س ¨ + 5س² = 126

و م س2ن + ب سن + ح = صفر

و س ¨ + م س§ = د

و (100 - س²) (10 + س)² = 8100

والمعادلة الأخيرة حل للمسألة التالية:

أوجد طول الضلع الرابع المجهول في شبه المنحرف أ ب ج د الذي فيه أ ب يوازي ج د، أ د يساوي د ج يساوي ب ج يساوي10 والمساحة 90؟
ع = ¬ (100 - س²)

… مساحة أ ب ج د =

(20 + 2س) ¬ (100 - س²)

أي أن 1/2 ¬ (100 - س²) (10 + س) = 90

وبتربيع الطرفين يكون الناتج:

(100 - س²) (10 + س)² = 8100

(10 + س) ص = 90، حيث ص = ¬( 100 - س²)؛ أي س² + ص² = 100

أما معادلات الدرجة الثانية فقد وردت فيها مسائل كثيرة في كتبهم منها على سبيل المثال المعادلات التالية:

س² + ص = ط² و ص² + س = ن²

و س ص + س = ط² و س ص + ص = ن²

ولعل الرياضيين العرب هم أول من استعان بالهندسة لحل المعادلات الجبرية من الدرجة الثانية، وهذا من طرق الهندسة التحليلية؛ ولثابت بن قرة في ذلك ابتكارات لم يسبق إليها، فقد وضع كتابًا في الجبر بيَّن فيه علاقة الجبر بالهندسة وكيفية الجمع بينهما. كما وردت مسائل لدى الخوارزمي وغيره من الرياضيين العرب استخدموا فيها الهندسة لحل مسائل الجبر من ذلك ما ورد لدى الخوارزمي في حل المعادلات التالية هندسيًا:

س² + 10س = 39

س² + 21 = 10س

س² = 3 س + ع

فلحل المعادلة الأولى على سبيل المثال: نفترض أن المستقيم ج ب = س ، ثم نقيم عليه المربع أ ب ج د ونمد د ج إلى م، و د أ إلى ه بحيث يكون أ ه مساويًا ل ج م =1/2 × 10 = 5 ثم نكمل الرسم
من المساحات الموضحة، والمعادلة
س² + 10س = 39

نجد: س² + 10س + 25 = 39 + 25 = 64

وهي مساحة المربع د ه ع م

… ضلعه يساوي 8

… س = 8 - 5 = 3
عني الرياضيون العرب أيضًا بالجذور الصّماء، وبحثوا في نظرية ذات الحدين التي يمكن بوساطتها رفع المقدار الجبري ذي الحدين إلى قوة معلومة أُسها عدد صحيح موجب. أما في الجذور الصم؛ فقد كان الخوارزمي أول من استعمل كلمة أصم للإشارة إلى العدد الذي لا جذر له. وأوجد العرب طرقًا لإيجاد قيم تقريبية للأعداد التي ليس لها جذور؛ فبهاء الدين العاملي يقول في الخلاصة: ¸وإن كان أصم فأسقط منه أقرب المجذورات إليه، وانسب الباقي إلى مضعّف جذر المُسقط مع الواحد، فجذر المُسقط مع حاصل النسبة هو جذر الأصم بالتقريب·. فلو افترضنا أن العدد الأصم في هذ الحالة (م)، وكان أقرب عدد له جذر تربيعي هو (ب²) وكان الفرق يساوي (ه) لذا فإن:

م - ب² = ه

وعلى هذا يكون ¬ م = ب + ه/2ب+1

فعلى سبيل المثال ¬ 10= 3 + 1/2×3+1 = 3 + 1/7 = 1/7 3.
الهندسة. أخذ هذا المصطلح من كلمة أندازة الفارسية الأصل وعربت إلى هندسة. اهتم العرب بهذا العلم، وبنوا فيه على ما نقلوه من اليونان. وكان أهم مرجع لديهم هو كتاب أقليدس الذي ترجموه بعنوان الأصول وكتاب أقليدس. وكانت للعلماء العرب إسهامات طيبة في هذا العلم، إلا أنها لا ترقى إلى المستوى الذي بلغوه في الحساب والجبر. قام بترجمة كتاب أقليدس ثلاثة من أشهر العلماء، وكانت لكل منهم ترجمته الخاصة به. وقام بهذه الترجمات كل من حنين بن إسحاق، وثابت بن قرة ويوسف بن الحجاج. ثم جاء من بعدهم من اختصره مثل ابن سينا وابن الصلت، وفي مرحلة أخرى ألّف العرب على نسقه وأضافوا عليه مثل ابن الهيثم والكندي، ومحمد البغدادي.

ولما كان العرب يميلون إلى الجانب التطبيقي في تناولهم للمعارف أكثر من الجانب النظري فقد خرجوا بالهندسة النظرية اليونانية إلى المجال العملي التطبيقي. من ثم نجد أنهم يقسمون الهندسة إلى قسمين: عقلية وحسية؛ فالعقلية هي النظرية وألحقوها بالفلسفة، ولا يعمل بها إلا الحكماء الراسخون في الرياضيات البحتة. وهذا هو النوع الذي تفنن فيه علماء اليونان وعلى رأسهم أقليدس. أما العرب فكان إنجازهم فيها ضئيلاً نسبيًا. أما الهندسة الحسية فهي التطبيقية، التي استفاد منها العرب في العمران؛ في المساجد والقصور والأروقة والقباب وتخطيط المدن.

متفرقات هندسية. وضع العلماء العرب والمسلمون مصنفات هندسية تطبيقية تنم عن استقلال في التفكير على الرغم من انطلاقهم من نظريات أقليدس وفيثاغورث وأبولونيوس. يظهر ذلك بجلاء عند ابن الهيثم في كتابه الجامع في أصول الحساب وفي مقالاته في استخراج سمت القبلة؛ فيما تدعو إليه حاجة الأمور الشرعية من الأمور الهندسية؛ في استخراج ما بين البلدين في البعد بجهة الأمور الهندسية، وكذلك رسالة محمد البغدادي التي كان موضوعها تقسيم أي مستقيم إلى أجزاء متناسبة، مع أعداد مفروضة برسم مستقيم، وهي اثنتان وعشرون قضية: سبع في المثلث، وتسع في المربع، وست في المخمس.

بيَّن العرب كيفية إيجاد نسبة محيط الدائرة إلى قطرها (ط) ورمزوا لذلك بالحرف ط، وكانت كالتالي بالتقريب لدى الخوارزمي:

¬10 ، 1/7 3 ، 62,832/20,000

ويوضح ذلك في الجبر والمقابلة بالألفاظ ¸.. وكل مدورة (دائرة) فإن ضربك القطر في ثلاثة وسبع، هو الدور (المحيط) الذي يحيط بها، وهو الاصطلاح بين الناس من غير اضطرار، ولأهل الهندسة فيه قولان آخران: أحدهما أن نضرب القطر في مثاله، ثم في عشر، ثم نأخذ جذر ما اجتمع (الناتج)، فما كان فهو الدور. والقول الثاني، لأهل النجوم منهم، وهو أن نضرب القطر في اثنين وستين ألفًا وثمانية واثنتين وثلاثين، ثم نقسم ذلك على عشرين ألفًا، فما خرج فهو الدور. وكل ذلك قريب بعضه من بعض…·. وقد بلغ الاهتمام بهذه النسبة أن وضع فيها الرياضيون العرب مؤلفات من ذلك الكتاب الذي وضعه غياث الدين الكاشي بعنوان في نسبة القطر إلى المحيط.

أظهر الرياضيون العرب تفوقًا في الهندسة المستوية ولاسيما فيما يتعلق بالمتوازيات. فكان نصير الدين الطوسي مثلاً أول من لفت الانتباه لنقص أقليدس في قضية المتوازيات، وقام بتقديم الأدلة المبنية على فروض في كتابه الرسالة الشافية عن الشك في الخطوط المتوازية. كما استفاد ابن الهيثم من الهندسة المستوية والمجسمة في بحوثه عن الضوء، وتعيين نقطة الانعكاس في أحوال المرايا الكرية والأسطوانية والمخروطية، المحدبة والمقعرة. فنجد أنه وضع أولاً بضع عمليات هندسية على جانب من الصعوبة ذكرها وبيّن كيفية إجرائها ووضع لها البراهين الهندسية المضبوطة. ثم كانت الخطوة الثانية أن اتخذ هذه العمليات الهندسية مقدمات إلى الحلول التي أرادها لتحديد نقاط الانعكاس، ثم أضاف خطوة أخرى بتقديمه البراهين الهندسية لتلك الحلول.

عرف الرياضيون العرب علم تسطيح الكرة؛ وهو علم عرّفه حاجي خليفة في كشف الظنون بأنه ¸علم يتعرف فيه كيفية نقل الكرة إلى السطح مع حفظ الخطوط والدوائر المرسومة على الكرة، وكيفية نقل تلك الدوائر على الدائرة إلى الخط… وجعله البعض من فروع علم الهيئة (الفلك)، وهو من فروع علم الهندسة…·. فقد نقل العرب الخرائط من سطح الكرة إلى السطح المستوي، ومن السطح المستوي إلى السطح الكروي، ومن مصنفاتهم في هذا الفرع من الهندسة كتاب تسطيح الكرة لبطليموس؛ الكامل للفرغاني؛ الاستيعاب للبيروني؛ دستور الترجيح في قواعد التسطيح لتقي الدين.

وألّف العرب مصنفات كثيرة في المسائل الهندسية، وفي التحليل والتركيب الهندسي وفي موضوعات متصلة بذلك مثل تقسيم الزاوية، ورسم المضلعات المنتظمة وربطها بمعادلات جبرية. ويقال إن ثابت بن قرة قسّم الزاوية إلى ثلاثة أقسام متساوية بطريقة تخالف الطرق التي عرفها اليونان. كما بحث العلماء في مراكز الأثقال وتوسّعوا فيها واستعملوا البراهين الهندسية لحل بعض مسائلها. ومن هذا ما ذكره الكوهي في كتاب مراكز الأثقال ¸… أدرنا نصف دائرة أ ب ج التي مركزها د، مع القطع المكافئ الذي سهمه خط ب د، ومع المثلث أ ب ج حول الخط ب د القائم على الخط أ ج حتى يحدث من إدارة نصف الدائرة نصف الكرة، ومن القطع المكافئ مجسم المكافئ، ومن المثلث مخروط، فيكون المخروط مجسمًا للمثلث كالمجسم المكافئ للقطع المكافئ، ونصف الكرة لنصف الدائرة. فمركز ثقل مجسم المثلث، أعني المخروط، يقع على نسبة الواحد إلى أربعة، والمجسم المكافئ على نسبة الاثنين إلى ستة، ونصف الكرة على نسبة الثلاثة إلى ثمانية. أما مركز ثقل المثلث فعلى نسبة الواحد إلى ثلاثة، والقطع المكافئ على نسبة الاثنين إلى خمسة، ونصف الدائرة على نسبة الثلاثة إلى سبعة…·.أما في المساحات فقد تناولوها في ثنايا المصنفات الرياضية باعتبارها فرعًا من الهندسة. فنجد أن بهاء الدين العاملي يخصص لها الفصول الثلاثة الأولى من الباب السادس من كتاب خلاصة الحساب، ويتناول في مقدمته بعض تعريفات أولية في المساحة عن السطوح والأجسام. ثم في الفصل الأول مساحة السطوح المستقيمة الأضلاع كالمثلث، والمربع، والمستطيل، والمعين، والأشكال الرباعية، والمسدس، والمثمن وغيرها. ويتناول في الفصلين الثاني والثالث طرق إيجاد مساحة الدوائر والسطوح المنحنية كالأسطوانات، والمخاريط التامة والناقصة، والكرة. كما يذكر في الباب السابع أشياء تتعلق بالمساحة عل سطح الأرض لإجراء المسح لشق القنوات، ومعرفة مقدار الارتفاعات وعرض الأنهار وأعماق الآبار.
كان من الطبيعي أن ينقل العرب معارفهم الهندسية ويطبقوها على فنهم المعماري من مساجد وقصور ومدن وغيرها، واهتموا بالزخارف الهندسية التي اتسمت بالتناسق والدقة. وهذا يتطلب معرفة دقيقة بأعقد قوانين علم الهندسة لضبط رسم الخطوط والدوائر وتقسيم الأشكال الهندسية. ولا أدل على ذلك من الشواهد القائمة حتى الآن في الأندلس كقصر الحمراء وجنة العريف في غرناطة.

كما برع العرب في تخطيط المدن، وشق الطرق، والقنوات للري. وكان تصميم المدن يتم أولاً بعمل الخرائط الهندسية على الجلود والأقمشة والورق، بل كانوا يعملون لها نماذج مجسَّمة صغيرة كما يعمل مهندسو المعمار اليوم. ومن أشهر المدن التي خططها المعماريون العرب والمسلمون على أسس هندسية بغداد والبصرة في العراق، والفسطاط والقاهرة في مصر، والزهراء في الأندلس، وأصفهان في إيران، وأجرا في الهند. وقد راعوا في هذه المدن وغيرها الموقع الجغرافي، وتوافر المياه، وشق أكبر شوارعها في وسطها، بحيث يخترقها منصفًا لها، ويقوم على جانبي هذا الشارع الأحياء السكنية التي أطلق عليها الخطط. وكان يقوم في مركز المدينة المسجد الكبير ودار الإمارة ودواوينها.



المثلثات. عُرف هذا العلم عند العرب باسم علم الأنساب أيضًا، وقد سمي كذلك لأنه يقوم على استخراج الأوجه المتعددة الناشئة عن النسبة بين أضلاع المثلث. ويعدّ هذا الفرع من الرياضيات علمًا عربياً كالجبر؛ فإلى العرب يرجع الفضل في وضعه بشكل مستقل عن الفلك.

من أبرز ما أضافه الرياضيون العرب والمسلمون إلى علم المثلثات؛ استعمالهم الجيب بدلاً من وتر ضعف القوس في قياس الزوايا. وأدّى ذلك إلى تسهيل كثير من المسائل الرياضية. واستنبط الرياضيون العرب الظل في قياس الزاوية المفروضة بالضلع المقابل لها مقسومًا على الضلع المجاور. والظل هو المماس، غير أن كلمة مماس لاتستخدم اليوم في الهندسة بينما لازالت كلمة ظل تستخدم في المثلثات. وذكر الطوسي في كتاب شكل القطاع ¸إن السبق في استنباط هذا الشكل (الظلي) لأبي الوفاء البوزجاني بلا تنازع مع غيره… وإن في المثلث القائم الزاوية الذي يكون من القسي العظام، تكون نسبة جيب أحد ضلعي القائمة إلى جيب الزاوية القائمة، كنسبة ظل الضلع الأخرى من ضلعي القائمة إلى ظل الزاوية الموترة به·.

أثبت الرياضيون العرب أن نسبة جيوب الأضلاع بعضها إلى بعض تساوي نسبة جيوب الزوايا الموترة بتلك الأضلاع بعضها إلى بعض في أي مثلث كروي. وكان أول من قام بذلك أبو نصر علي بن عراق والبوزجاني في أواخر القرن العاشر الميلادي. كما أوجدوا طريقة مبتكرة لحساب الجداول الرياضية للجيب، وللمماس والقاطع وتمامه. وكان البوزجاني أول من حسب جيب الزاوية التي قدرها 30 دقيقة حسابًا اتفقت نتائجه فيها إلى ثمانية أرقام عشرية مع القيمة الصحيحة.

قام الرياضيون العرب بحل بعض مسائل المثلثات جبريًا، فالبتاني، على سبيل المثال، تمكن من حساب قيمة الزاوية م من المعادلة جا م/جتا م = س بطريقة جبرية كان سابقًا إليها وهي :

جا م = س/ ¬ س² +1



واخترع العرب حساب الأقواس التي كان من فوائدها تسهيل قوانين التقويم، وتُريح من استخراج الجذور المربعة. وكشفوا بعض العلاقات الكائنة بين الجيب والمماس والقاطع ونظائرها، كما توصلوا إلى معرفة القاعدة الأساسية لمساحة المثلثات الكروية، والمثلثات الكروية المائلة الزاوية. ويُعتبر استعمال العرب المماسات والقواطع ونظائرها في قياس الزوايا والمثلثات نقلة هائلة في تطور العلوم، لأنه سهّل كثيرًا من المسائل الرياضية المعقدة.



رواد العلوم الرياضية وأهم مؤلفاتهم. صنّف الرياضيون العرب مؤلفات كثيرة في مختلف فروع العلوم الرياضية؛ كثير منها كان موسوعيًا شمل كل هذه الفروع، بينما اقتصر بعضها الآخر على البحث في علم بعينه، أو فرع من هذا العلم. وقد أتوا على ذكر كل ما استجد في نظرهم من فروع هذا العلم من الأمم المجاورة وأضافوا عليه إضافات ذكروها في هذه المصنّفات وطبقوها عمليًا.

من القرن الثالث إلى الخامس الهجري. تغطي هذه الفترة إسهام بعض علماء الرياضيات في الحقبة الواقعة بين الخوارزمي وأبي الريحان البيروني. وقد نبغ في تلك الحقبة إلى جانب الخوارزمي والبيروني علماء كثيرون منهم، على سبيل المثال، أبو كامل شجاع بن أسلم وثابت بن قرة وسنان بن الفتح الحراني الحاسب والبوزجاني والبتاني وابن الهيثم وآخرون.

كان الخوارزمي أول من ألّف في الرياضيات على عهد المأمون الذي عيّنه رئيسًا لبيت الحكمة. وكان أعظم مؤلَّف له في حقل الرياضيات كتاب الجبر والمقابلة، وهو الكتاب الذي أثر في كل الأدبيات التي تناولت العلوم الرياضية من بعده، سواءً في الشرق أو الغرب. لذا عُدّ الخوارزمي واحدًا من أكبر الرياضيين في جميع العصور. وقد وضع هذا الكتاب بتكليف من الخليفة المأمون ليفيد الناس منه في التجارة والمواريث، والوصايا، وقياس المساحات الخاصة بالأراضي. واستخدم في هذا الكتاب مصطلح جبر لأول مرة. وقد ترجم هذا الكتاب إلى اللاتينية روبرت الشستري، وهو أول من ترجم القرآن إلى اللاتينية. وكانت ترجمة هذا الكتاب أساسًا لدراسات أشهر رياضيي الغرب مثل ليوناردو البيزي الذي اعترف بأنه مدين للعرب بذخيرته المعرفية في الرياضيات.

تناول الخوارزمي في الجبر والمقابلة موضوعات شتى في حل المعادلات الجبرية. تكلم أولاً عن العدد في حساب الجبر والمقابلة، وقسمه إلى جذر ومال وعدد مفرد، وأتى بأمثلة من المعادلات ذات الدرجة الثانية، وشرح حلولها بطريقة جبرية أو هندسية. وفي باب الضرب، بيَّن كيفية ضرب الأشياء؛ أي الجذور بعضها ببعض، ثم باب الجمع والنقصان (الطرح)، ووضع فيه عدة قوانين لجمع المقادير الجبرية وطرحها وضربها وقسمتها، ثم باب المسائل الست؛ وهي مسائل تطبيقية في الجبر أوردها بنصها ثم قام بحلها كنماذج للأبواب المتقدمة، ثم باب المسائل المختلفة؛ وذكر فيها ضروبًا مختلفة من المسائل تؤدي إلى معادلات من الدرجة الثانية وشرح كيفية حلها. يلي ذلك أكثر الأبواب اعتمادًا على التطبيق العملي، وهو باب المعاملات؛ ويتضمن المعاملات التي يقوم بها الناس فيما بينهم، ويحتاجون فيها إلى ضرب من عمليات الجبر والحساب كالبيع والشراء والإجارة، وأورد فيه مسائل تتناول البيع والإجارات وما يتعامل به الناس من الصرف والكيل والوزن. يأتي بعد ذلك باب المساحة وأوضح معنى الوحدة المستعملة في المساحات، وأعطى مساحات بعض السطوح المستقيمة الأضلاع والدوائر والقطاعات. أما الخاتمة فهي كتاب الوصايا، وتطرق فيه إلى مسائل عملية وأمثلة كثيرة تتعلق بالوصايا، وتقسيم التركات، وتوزيع المواريث، وحساب الدور الذي يشمل باب التزويج في المرض، وباب العتق في المرض، وباب في العقر في الدور، وباب السلم في المرض. ونعرض فيما يلي نصًا من حديثه في باب المساحة لجزالة لغته وسهولتها: ¸اعلم أن معنى واحد في واحد إنما هو مساحة، ومعناه ذراع في ذراع؛ فكل سطح متساوي الأضلاع والزوايا، يكون من كل جانب واحدًا؛ فإن السطح كله واحد. فإن كان من كل جانب اثنان (ذراعان) وهو متساوي الأضلاع والزوايا، فالسطح كله أربعة أمثال السطح الذي هو ذراع في ذراع… وكل سطح مربع يكون من كل جانب نصف ذراع فهو مثل ربع السطح الذي هو من كل جانب ذراع… وكل معينَّة (شكل معيَّن) متساوية الأضلاع، فإن ضربك أحد القطرين في نصف الآخر فهو تكسيرها (حاصل الضرب)، وكل مدورة (دائرة)، فإن ضربك القطر في ثلاثة وسُبع هو الدور (المحيط) الذي يحيط بها…·.

اشتهر أبو كامل شجاع بن أسلم (ت نحو 267ه، 880م) بالحاسب المصري، وهو من المعاصرين للخوارزمي. ومن مؤلفاته في الرياضيات كتاب الجمع والتفريق، ويبحث فيه القواعد الأساسية للعمليات الحسابية لاسيما الجمع والطرح كما يبدو من عنوانه. وله أيضًا كتاب الخطأين؛ ويبحث فيه أصول حل المسائل الرياضية بطريق الخطأين. وكتاب الجبر والمقابلة وفيه يحاول تكملة ما استدركه على الخوارزمي، كما أشاد فيه بفضل الخوارزمي في علم الجبر والمقابلة. ويقول فيه ¸إن كتاب محمد بن موسى (الخوارزمي) المعروف بكتاب الجبر والمقابلة أصحها أصلاً، وأصدقها قياسًا، وكان مما يجب علينا من التقدمة الإقرار له بالمعرفة وبالفضل؛ إذ كان السابق إلى كتاب الجبر والمقابلة، والمبتدئ له، والمخترع لما فيه من الأصول التي فتح الله لنا بها ما كان مغلقًا، وقرّب ما كان متباعدًا، وسّهل بها ما كان معسرًا، ورأيت فيها مسائل ترك شرحها وإيضاحها، ففرعت منها مسائل كثيرة، يخرج أكثرها إلى غير الضروب الستة التي ذكرها في كتابه… وبّينت شرحه، وأوضحت ما ترك إيضاحه وشرحه·. وله من الكتب الرياضية أيضًا كتاب الوصايا بالجذور، والشامل الذي يبحث في الجبر، وهو من أحسن الكتب التي ألّفت في ذلك العصر، وإليه أشار سميث في تاريخ الرياضيات بأنه كان وحيد عصره في حل المعادلات الجبرية، وفي كيفية استعمالها لحل المسائل الهندسية.

مهَّد مهندس العرب ثابت بن قرة (ت 288ه، 900م) لإيجاد التكامل والتفاضل؛ وذلك بحساب حجم الجسم المتولد عن دوران القطع المكافئ حول محوره. كما يُعزى إليه العثور على قاعدة تستخدم في إيجاد الأعداد المتحابة؛ وهي أزواج نادرة من الأعداد لم يبحث فيها أحد قبله. انظر: الحساب في الجزء السابق من هذه المقالة. كما أن ثابت كان أول من بحث في المربعات السحرية بعد الصينيين. واستطاع أن يبتدع طريقة في تقسيم الزاوية بأسلوب لم يسبق إليه. وله ابتكارات في الهندسة التحليلية؛ وهي الهندسة التي تستفيد من التطبيقات الجبرية.

صنّف ثابت بن قرة كثيرًا من المؤلفات في الرياضيات منها، على سبيل المثال، كتاب في المسائل الهندسية؛ كتاب في المربع وقطره؛ كتاب في الأعداد المتحابة؛ تصحيح مسائل الجبر بالبراهين الهندسية؛ المختصر في الهندسة؛ كتاب في المثلث القائم الزاوية. كما ترجم العديد من الكتب من أشهرها كتاب المدخل إلى علم العدد لنيقوماخوس الجرشي (ت نحو 135م) نسبة إلى جرش (في الأردن اليوم). وهذا الكتاب الأول من نوعه الذي عالج فيه مؤلفه علم الحساب مستقلاً عن الهندسة. وكان من بين الفوائد التي ترتبت على ترجمة هذا الكتاب إدخال مصطلحات رياضية جديدة إلى اللغة العربية، كما أسهمت في توحيد الاصطلاحات والتعابير الرياضية التي احتاجها العلماء العرب والمسلمون إبان نهضتهم العلمية.

اشتهر البتاني (ت 317ه، 929م) بوصفه فلكيًا أكثر منه رياضيًا. وهو من الذين أضافوا بحوثًا مبتكرة في الفلك والجبر والمثلثات؛ لذا يعدّه الكثيرون من مؤرخي العلوم من عباقرة العالم الذين وضعوا نظريات مهمة. وهو الذي أدخل الجيب واستعمله بدلاً من كلمة الوتر؛ إذ إنه ترك الحساب بالوتر، كما كان يفعل بطليموس ومن جاء بعده، وفضل حساب الهنود بالجيب (نصف الوتر). وهو الذي أدخل مصطلح جيب التمام وأول من عمل الجداول الرياضية لنظير المماس، وعرف قانون تناسب الجيوب، واستخدم معادلات المثلثات الكروية الأساسية والخطوط المماسة للأقواس، واستعان بها في حساب الأرباع الشمسية، وأطلق عليها اسم الظل الممدود؛ أي خط المماس.

يعد أبو الوفاء البوزجاني (ت 388ه، 998م) أحد الأئمة المعدودين في الرياضيات والفلك. وله فيهما مؤلفات قيمة، واعترف له كل من جاء بعده من رياضيي الشرق والغرب بأنه من أشهر الذين برعوا في الهندسة. وعندما ألّف في الجبر أضاف إضافات ذات شأن على بحوث الخوارزمي فاعتبرت أساسًا لعلاقة الهندسة بالجبر. وقد استعان بالهندسة في حل المعادلتيْن التاليتين:

س ¨ = ح ، س ¨ + ح س§ = ب

واستطاع أن يجد حلولاً لها تتعلق بالقطع المكافئ.

يعود الفضل للبوزجاني في وضع النسبة المثلثية (الظل)، وهو أول من استعملها في حلول المسائل الرياضية. كما أوجد طريقة جديدة لحساب جداول الجيب، وكانت جداوله دقيقة للغاية. ووضع بعض المعادلات التي تتعلق بجيب الزاويتيْن، وكشف بعض العلاقات بين الجيب والمماس والقاطع ونظائرها.

وللبوزجاني مؤلفات كثيرة قيمة في الرياضيات من أشهرها: منازل في الحساب؛ وقد قسمه إلى سبعة أبواب احتوت على النسبة والضرب والقسمة والمساحة وحساب الخراج، والمقاسات والصروف ومعاملات التجار. ومن كتبه الأخرى: تفسير الجبر والمقابلة للخوارزمي؛ المدخل إلى الأرثماطيقي؛ كتاب استخراج الأوتار؛ كتاب العمل بالجدول الستيني.

اشتهر ابن الهيثم بوصفه فيزيائياً، غير أن له في الرياضيات بحوثًا أصيلة تدل على أنه كان رياضياً بارعاً تجلت براعته في تطبيق الهندسة والمعادلات والأرقام في المسائل المرتبطة بالطبيعة والفلك، وفي البرهنة على قضاياها ببراهين غاية في البساطة أحيانًا، ومعقدة أحيانًا أخرى، وهي تتناول الهندسة بنوعيها المستوية والمجسمة.

طبق ابن الهيثم الهندسة على المنطق، ووضع في ذلك كتابًا. نقل ابن أبي أصيبعة في طبقات الأطباء قول ابن الهيثم ¸كتاب جمعت فيه الأصول الهندسية والعددية من كتاب أقليدس وأبولونيوس، ونوعت فيه الأصول وقسمتها، وبرهنت عليها ببراهين نظمتها من الأمور التعليمية والحسية والمنطقية، حتى انتظم ذلك مع انتقاص توالي أقليدس وأبولونيوس·.

اتبع ابن الهيثم منهجًا علمياً في بحوثه كلها، خصوصًا ما كان منها في الضوء. انظر إسهام ابن الهيثم في الجزء الخاص بالفيزياء من هذه المقالة. وكتبه المتعلقة بالرياضيات كثيرة منها: شرح أصول أقليدس في الهندسة والعدد؛ تحليل المسائل الهندسية؛ حساب المعاملات؛ أصول المساحة وذكرها بالبراهين؛ خواص المثلث من جهة العمود؛ تربيع الدائرة؛ كتاب في حساب الخطأين.

من القرن السادس إلى الحادي عشر الهجري. تغطي هذه الحقبة إسهام بعض العلماء الذين نبغوا في حقل العلوم الرياضية، بدءًا من عمر الخيام وانتهاءً ببهاء الدين العاملي. وتميزت هذه الحقبة بظهور علماء طوروا كثيرًا من أسس العلوم الرياضية التي تركها أسلافهم في الحقبة السابقة.

كان عمر الخيام من أنبغ الذين اشتغلوا في حقل الرياضيات ولاسيما الجبر، ودرس بدهيات هندسة أقليدس ونظرياتها العامة. والخيام من أوائل العلماء الذين حاولوا تصنيف المعادلات بحسب درجاتها وعدد الحدود التي فيها. واستخدم بعض المعادلات التي استعملها الخوارزمي من قبل في الجبر والمقابلة؛ من ذلك:

س² + 10 س = 39

و س² + 20 = 10 س

و 3 س+ 4 = س²

واستطاع الخيام أن يحل المعادلات التكعيبية هندسياً، واعتبر أن المعادلات ذات الدرجات الأولى والثانية والثالثة إما أن تكون بسيطة مثل : س = ص ، م س = س§ أو مركبة مثل: س² + د س = ص ، س§ + دس² + ج س = ه، ووضع للمعادلات البسيطة ستة أشكال وللمركبة اثني عشر شكلاً.

ألف الخيام كثيرًا في الفلك والرياضيات وغيرهما بالفارسية، وأهم آثاره العربية في الرياضيات شرح ما يشكل من مصادرات أقليدس؛ مقالة في الجبر والمقابلة.

كان أول من استخدم الرموز في الجبر القلصادي أبو الحسن علي القرشي (ت 891ه، 1486م)، وقد نبغ في علم الحساب وألّف فيه مؤلفات ذات شأن. كما أبدع في نظرية الأعداد وفي بحوثه في علم الجبر. وأول مؤلف له اطلع عليه الأوروبيون كان كتاب كشف الأسرار عن علم الغبار.

أعطى القلصادي قيمة تقريبية للجذر التربيعي للكمية (س² + ص) كالتالي:س² + ص = ¬س² +ص = 4 س §+ 3 س ص / 4 س ² + ص وتُعتبر هذه المعادلة مهمة لأنها أبانت طريقة لحساب الجذور الصم بكسور متسلسلة. وقد استفاد من هذه العملية ليوناردو البيزي وغيره في استخراج القيم التقريبية للجذور الصم.

من مصنفاته في الرياضيات، كشف الجلباب عن علم الحساب؛ قانون الحساب؛ كتاب تبصرة في حساب الغبار؛ كشف الأسرار عن علم الغبار وهو مختصر من كتاب كشف الجلباب عن علم الحساب. وهذا الكتاب يحتوي على مقدمة وأربعة أجزاء وخاتمة. وذكر في المقدمة صفة وضع حروف الغبار وما يتعلق بها. والجزء الأول يتناول عمليات الجمع والطرح والضرب والقسمة ومسائل تطبيقية، والثاني يتناول الكسور وإجراء العمليات الحسابية والجبرية عليها. والثالث يتناول الجذور. والرابع يتناول كيفية استخراج المجاهيل والجبر والمقابلة وعملياتهما. أما الخاتمة فتتناول الاستثناء في المعادلات والنسبة واستخراج العدد التام والناقص.

ظلت آثار بهاء الدين العاملي (ت 1031ه، 1622م) في الرياضيات والفلك زمنًا طويلاً مرجعًا للكثير من العلماء والباحثين. ومن خلال عمله في إيجاد الجذور الحقيقية والتقريبية للمعادلات الجبرية، بالطريقة التي وضعها الخوارزمي، توصل إلى طريقة جديدة أسهل لحل هذه المعادلات، وأطلق على هذه الطريقة طريقة الكفتين أو الميزان. واستمر العمل بهذه الطريقة من بعده حتى ابتكر إسحق نيوتن طريقة أخرى لإيجاد الجذور الحقيقية التقريبية، هي التي تُطبق اليوم.

يعد كتاب خلاصة الحساب أشهر كتب العاملي؛ إذ إنه انتشر انتشارًا كبيرًا في أوساط المعلمين والطلاب على حد سواء، وكان يستعمل إلى وقت قريب في بعض مدارس الشرق الإسلامي. ويتكون هذا الكتاب من عشرة أبواب تعليمية وفيه بعض الأساليب التي لم يُسبق إليها. وجاءت محتويات الأبواب العشرة كما يلي: تناول في البابين الأول والثاني الأعداد الصحيحة والجذور على التوالي. وتكلّم فيهما عن العمليات الحسابية المألوفة من جمع وطرح وقسمة وضرب، واستخراج جذور الكسور وتحويلها. وتناول في الأبواب من الثالث إلى الخامس كيفية استخراج المجهولات بالتناسب وبحساب الخطأين وبالتحليل والتعاكس. وخصص البابين السادس والسابع لحساب مساحة السطوح المستقيمة والأضلاع، والدوائر والمخروط، وقياس عرض الأنهار والمرتفعات وأعماق الآبار. وتناول في الباب الثامن استخراج المجهولات بطريق الجبر والمقابلة. أما البابان الأخيران فقد أورد فيهما بعض القواعد والمسائل التطبيقية من قبيل ¸شحذ ذهن الطالب وتمرينه على استخراج المطلب·.


الرياضيات في الحضارة الإسلامية



في العصر العباسي الأول (132 ه 232 ه) اهتم علماء المسلمين بالهندسة اهتمامًا كبيرًا، في حين أهملتها معظم الشعوب الأخرى، والخطوة الأولى التي اتخذها علماء المسلمين هي ترجمة كتاب إقليدس في علم الهندسة الذي يسمى باليونانية (STIOCHEIO) وبالإنجليزية (ELEMENTS) وبالعربية كتاب (الأصول الهندسية) أو(الأركان الهندسية) و نقل كتاب إقليدس لأول مرة إلى العربية في عهد الخليفة العباسي أبى جعفر المنصور.
(136157ه) (754775م).

http://www.al3en.net/wp-content/uploads/2009/03/savar.jpg

وقام الحجاج بن يوسف بن مطر (170 220 ه) (786 835 م) بالترجمة والتعليق على كتاب "الأصول الهندسية " لإقليدس مرتين: ألأولى سماها "بالهاروني" والثانية "بالمأموني". كما تطرق علماء المسلمين إلى قضايا وبحوث جديدة لم يتناولها إقليدس وبقيت أوربا تستعمل في جامعاتها هندسة إقليدس المترجمة عن اللغة العربية حتى القرن العاشر الهجري الموافق السادس عشر الميلادي.

ومن أمثلة التنقيحات والإضافات التي أدخلها علماء المسلمين على هندسة إقليدس " فرضية التوازي " التي لم يستطع إقليدس أن يثبتها أو يعرفها على هيئة نظرية فعالج هذه المصادر ابن الهيثم أولا ثم نصير الدين الطوسي في القرن السابع الهجري (الثالث عشر الميلادي).

 حظي العصر العباسي الثاني والثالث (من القرن الثالث إلى السابع الهجري) بعدد كبير من كبار الرياضيين الذين أبدعوا في علوم الرياضيات، وسنقدم هنا بإيجاز بعضًا من إنجازاتهم التي أثرت تأثيرًا بارزًا في ازدهار الفكر الرياضي وتقدمه في الشرق والغرب.

أولاً الحساب:

وفق الله تبارك وتعالى علماء المسلمين في ابتكار نظامين لكتابة الأرقام.
النظام الأول: ويسمى بالأرقام الغبارية، وسميت بذلك؛ لأنهم كانوا يذرون غبارًا خفيفًا على الألواح ثم يخطون فوق هذا الغبار بالأرقام. وهذه الأرقام تقوم في أساسها على الزوايا وهى: 0123456789، التي تنتشر في المغرب العربى بما في ذلك الأندلس، ومنها دخلت إلى أوربا وسميت بالأرقام العربية.

النظام الثاني: وهو الأرقام الهندية، وهى الطريقة المتوارثة المنتشرة في الأقطار الإسلامية والعربية المشرقية إلى الآن. كما ابتكر المسلمون مفهوم "الصفر" الذي سهل العمليات الحسابية تسهيلا لا حدود له، وعرفوه بأنه: "المكان الخالي من أي شيء".

وقد أخذه الأوربيون باسمه العربي وتداولوه في مختلف لغاتهم، فقال الإنجليز: "Cipher"، وقال الفرنسيون: "Chiffre"، وقال الألمان:"Ziffer"، وسرعان ما خضع لعوامل التغيير اللغوي وصار: "Zero". ويقول الدكتور"كارل بوير" في كتابه "تاريخ الرياضيات": "إنه بدون اكتشاف العرب للأعداد العربية كان من الممكن أن تكون الرياضيات الآن في مهدها، ولكن بواسطتها استطاع الإنسان أن يخترع، وأن يعرف الطبيعة بأكملها".

ولقد قسم المسلمون الأعداد العربية إلى قسمين أساسين هما: زوجي، وفردي. وعرفوا كلا منهما، كما بحثوا في أنواعها ونظرياتها، وفي ذلك قالوا: "ما من عدد إلا وله خاصية أو عدة خواص، لا يشاركه فيها غيره".

ولم يقف المسلمون عند هذا الحد، بل بحثوا في النسبة والمتواليات وقسموها إلى ثلاثة أنواع:

1- المتواليات العددية.
2- المتواليات الهندسية.
3- المتواليات التوافقية أو التأليفية.

وكشفوا عن بعض حقائق النسبة فيما يتعلق بالأبعاد والأثقال، وكيفية استخراج الأنغام والألحان من النسبة التأليفية.

وقد بسط "إخوان الصفا" في القرن الرابع الهجري القول في ذلك، حيث ذكروا في رسائلهم: "إن علم النسبة علم شريف جليل، وإن الحكماء جميع ما وضعوه من تأليف حكمتهم فعلى هذا الأصل أسسوه وأحكموه، وقضوا لهذا العلم بالفضل على سائر العلوم، إذ كانت كلها محتاجة إلى أن تكون مبنية عليه، ولولا ذلك لم يصح عمل، ولا صناعة، ولا ثبت شيء من الموجودات على الحال الأفضل".

أما فيما يتعلق بالتناسب، وطريقة استخراج المجهول، فقد أبدعوا أيما إبداع، لقد أوضحوا استخراج المجهولات بالأربعة المتناسبة، وبحساب الخطأين، وبطريقة التحليل والتعاكس، وبطريقة الجبر. كما ابتكر المسلمون طرقًا جديدة في العمليات الحسابية حملت اسم المسلمين. ومما لا شك فيه أن المسلمين هم مبتدعو الكسر العشري بما هو عليه الآن من ابتكار الخط المستقيم الفاصل بين البسط والمقام. ويقول في ذلك الأستاذ الكبير "لويس كارينكى" في كتابه "المؤثرات على تاريخ العلوم": "إن الكسر الاعتيادي واستعماله كما هو الآن من المعالم التاريخية التي يجب أن يفخر بها المسلمون"، ويقول العالم الرياضي المشهور "ل. فودستين" في مقالة بعنوان "الأعداد العربية": "إن وصول الرياضيات لما هي عليه الآن يرجع إلى ابتكار المسلمين لعملياتهم الحسابية العظيمة". ¬

ومن الكتب التي وضعت في الحساب:

كتاب للخوارزمي يعتبر الأول في نوعه من حيث التبويب والمادة العلمية، كما يعتبر أول كتاب في الحساب نقله الأوربيون إلى لغاتهم، واستمر زمنًا طويلا مرجعًا هامًا للعلماء والتجار والمحاسبين، ويدل الكتاب على أن المسلمين ابتكروا كثيرًا من المسائل التي تشحذ الذهن وتقوى التفكير، كما أنه يعكس الأسلوب المتميز الذي اتبعوه في إجراء العمليات الحسابية بحيث كانوا يوردون لكل عملية حسابية طرقًا متعددة تتمشى مع مراحل النمو.

http://www.aleppos.net/forum/attachment.php?attachmentid=126557&d=1209603018

ومن الطريف أن علماء التربية الحديثة أوصوا باستخدام "خوارزمية الضرب بطريقة الشبكة" في المدارس الابتدائية لسهولة فهمها ومقدرة طلاب هذه المرحلة على استيعابها.
وكتاب "الباهر" في الحساب والجبر وعلاقتهما بالهندسة للسموأل بن يحيى المغربي، وقد نشرت مخطوطة هذا الكتاب حديثًا في سوريا، وهو كتاب يعرف بعالم رياضي جليل يحتل مكانة عالية بين علماء العرب والمسلمين.

وهناك كتب كثيرة أخرى لا تقل أهمية عن ذلك مثل: كتاب "الجامع في أصول الحساب" للحسن بن الهيثم، وكتاب "المقنع في الحساب" للقاضي النسوي، وكتب "الفخري" و"الكافي" و"البديع" لأبى بكر الكرجي، وغيرها.

كذلك لعبت بعض المؤلفات في علم الحساب دورًا هامًا في الكشف عن اللوغاريتمات ووضع جداولها التي أصبحت عظيمة الفائدة في تسهيل حل المسائل المتضمنة أعدادًا كبيرة وتقوم فكرتها أساسًا على استبدال عمليات الضرب والقسمة بعمليات الجمع والطرح، ومعرفة الصلة بين حدود المتواليات الهندسية وحدود المتوالية العددية.

ومن هذه المؤلفات كتاب "الجمع والتفريق" لسنان بن الفتح الحراني الذي شرح فيه كيفية إجراء عمليات الضرب والقسمة بواسطة عمليات الجمع والطرح. واستطاع ابن يونس المصري أن يتوصل إلى إيجاد القانون الأتي:
تجيب( س) . تجيب (ص) = ½ تجيب (س+ص) +½ تجيب (س-ص).

وكان لهذا القانون قيمة كبيرة عند علماء الفلك قبل اكتشاف اللوغاريتمات؛ إذ يسهل حلول كثير من المسائل الطويلة المعقدة. ومازالت في أوربا جداول اللوغاريتمات المعروفة في عصرنا تحمل اسم الخوارزمي أو "الغوريتمي".

ثانياً - علم الجبر:

سرعان ما طرق المسلمون باب التاريخ وسجلوا لأول مرة "علم الجبر" وعنهم أخذ العالم هذه الكلمة"Algebra" بأبعادها العلمية، حتى يقول "كاجوري": إن العقل ليدهش عندما يرى ما قدمه المسلمون في علم الجبر، لانهم في الحقيقة قدموه في صورة علمية ناضجة، سار على منوالهم فيها جميع الدارسين للرياضيات.

وكان كتاب "الجبر والمقابلة" للخوارزمي هو مصدرهم الاساسي، ويعد الخوارزمي أول من استنبط هذا العلم واستخرجه، وقد أورد فيه 800 مثالاً، ونقله إلى اللاتينية "جيرار الكريموني" خلال القرن (12م)، فاعتمدت عليه جامعات أوربا حتى القرن(16م) وبواسطته عرفت أوربا مبادئ علم الجبر.

كما توصل ثابت بن قرة إلى حجم الجسم المكافئ؛ ولهذا يعتبره كثير من الرياضيين مبتكر علم التفاضل والتكامل. وكتب البروفيسور "ديفيد سميث" في كتابه "تاريخ الرياضيات": "إن ثابت بن قرة، صاحب الفضل في اكتشاف علم التفاضل والتكامل؛ حيث أوجد حجم الجسم المكافئ، وذلك في عام (256ه). ومن المعروف أن علم التفاضل والتكامل أعان على حل عدد كبير من المسائل الصعبة والعمليات الملتوية".

وتقدم عمر الخيام بعلم الجبر خطوات إلى الأمام، وله كتاب نشر حديثًا بأمريكا سنة (2391م)، غير كتبه الأخرى المترجمة إلى اللغات الأجنبية وخاصة الفرنسية، وقد تميز كتابه في الجبر عن كتاب الخوارزمي، وطور المعادلات الجبرية من الدرجة الثالثة والرابعة بواسطة قطع المخروط، وهو أرقى ما وصل إليه المسلمون في الجبر، بل هو أرقى ما وصل إليه علماء الرياضيات في حل المعادلات في الوقت الحاضر.

كما كان لكتاب الجبر والمقابلة للخوارزمي شروح عديدة قام بها الكثير من علماء المسلمين الذين اهتموا بتطوير هذا العلم والتأليف فيه والإضافة إليه، مثل: أبى الوفاء البوزجاني، وأبى بكرالكرخي، والسموأل المغربي، وعبد الله بن الحسن الحاسب، وغيرهم.

ثالثاً الهندسة:

الهندسة من أبرز شواهد الحضارة الإنسانية وتطورها، وللمسلمين فيها باع طويل، فقد حفظوها من الضياع طوال العصور الوسطى، وأسلموها إلى أوربا لتبنى عليها، واستخدموا الجبر في بيان أوجهها، وشرحوا، وفرعوا، وأضافوا إضافات جديدة، كأسس الهندسة التحليلية، ولا يخفي أن الرياضيات الحديثة تبدأ منها، وترجموا كثيرًا من الكتب لإقليدس وبطليموس وأرشميدس. ثم تصدى لشرح كتاب إقليدس وبرهان مسلماته كثيرون مثل: البيروني، والحسن ابن الهيثم، وعمر الخيام، وغيرهم كما تطرقوا إلى قضايا وبحوث جديدة لم يتناولها إقليدس.

وكان كتاب ابن الهيثم "شرح مصادرات إقليدس" الذي عنى بالمسلمات، وكتابه "حل شكوك إقليدس في الأصول وشرح معانيه" من أهم المؤلفات التي أثارت العديد من المجادلات والمناقشات العلمية، وفتحت الباب لمزيد من التأليف في هذا المجال. وبقيت أوربا تستعمل في جامعاتها هندسة إقليدس المترجمة عن اللغة العربية حتى القرن(16م)، واستطاع عمر الخيام أن يبرهن أن مجموع زوايا أي شكل رباعي تساوى(360°) ومجموع زوايا أي مثلث تساوى (180°).

وكان للبيروني جهود مشكورة في علم الهندسة، ومن كتبه "استخراج الأوتار في الدائرة بخواص الخط المنحنى فيها"، وقد أراد البيروني في هذا الكتاب تصحيح دعوى القدماء اليونانيين في انقسام الخط المنحنى في كل قوس بالعمود النازل عليها من منتصفها والتغيير من خواصه. وقد ركز علماء المسلمين على الهندسة التطبيقية، ويتجلى هذا بوضوح في بعض مؤلفات ابن الهيثم كمقالته في "استخراج سمت القبلة"، ومقالته "فيما تدعو إليه حاجة الأمور الشرعية من الأمور الهندسية"، وكتاب طابق فيه بين الأبنية والحفور بجميع الأشكال الهندسية، وغيرها، ومن المؤلفات القيمة في علم الهندسة كتاب "الشكل الهندسي" لمحمد بن موسى بن شاكر، وكتاب في "استخراج المسائل الهندسية" لثابت بن قرة، وكتاب في "الأعمال الهندسية"لنفس المؤلف، وكتاب "الأعمال الهندسية" لأبى الوفاء البوزجاني. وأعطى الكندي جزءًا كبيرًا من وقته لعلم الهندسة؛ فألف فيها(32)كتابًا ورسالة، منها رسالة في "الهندسة الكروية"، ورسالة في "الأشكال الكروية"، ورسالة في "الهندسة المستوية"، وكتاب في "تسطيح الكرة" وغير ذلك..

رابعاً - علم حساب المثلثات:

حساب المثلثات علم عربي إسلامي، ويعترف جميع علماء الرياضيات الأوربيين بأن المسلمين أسهموا الإسهام الأساسي في إنشاء علم المثلثات، وأن الفضل يرجع لهم في جعله علمًا منتظمًا ومستقلا عن علم الفلك.

قال "رام لاندو" في كتابه "المؤثر على حضارة العرب": "إن حساب المثلثات في أوربا كان مأخوذًا من علم حساب المثلثات عند المسلمين. ويقول "ديفيد سميث" في كتابه تاريخ الرياضيات": "...ولم تدرس المثلثات الكروية المائلة بصورة جديدة وجدية إلا على أيدي العرب والمسلمين في القرن الرابع الهجري، العاشر الميلادي".

قام المسلمون بحل معادلات مثلثية كثيرة عن طرق التقريب، وهم أول من أدخل المماس في إعداد النسب المثلثية. ويروى مؤرخو الرياضيات أن علماء المسلمين كانوا هم أول من استعمل المعادلات المثلثية، وإليهم يرجع الفضل في تطوير الظل والجيب في علم حساب المثلثات. ويقول "جوزيف هل" في كتابه "حضارة العرب": "إن علم الجيب والظل يعتبر من تراث المسلمين"، ويضيف الدكتور "دارك ستروك" في كتابه "المختصر في تاريخ الرياضيات": "إن كلمة جيب كلمة عربية، وهذا لا يترك مجالا للشك في أن الفضل يرجع إلى المسلمين في تطويرها إلى ما هي عليه الآن".

ومن العلماء المسلمين الذين برزوا في هذا العلم ابن سنان البتاني، وهو أول من استعمل المعادلات المثلثية، وأبو الوفاء البوزجاني أول من أدخل المماس في عداد النسب المثلثية، واستخدم المماسات، والقواطع، ونظائرها في قياس المثلثات والزوايا. كما ابتكر طريقة لإنشاء جداول للجيوب في المثلثات المستوية، وأعطى جيب نصف الدرجة صحيحًا لثمانية أرقام عشرية، ووضع جداول لنسبة الظل التي أدخلها مع نسبتي القاطع وقاطع التمام.

ومن العلماء الذين أسهموا في علم المثلثات: أبو العباس التبريزي، وأبو جعفر الخازن في القرن الرابع الهجري، والبيروني، والعالم الأندلسي الجليل أبو إسحاق إبراهيم بن يحيى النقاش المعروف بابن الزرقالي عند الغربيين، وكان له أثر عظيم في علم حساب المثلثات وخاصة المثلث الكروي، ووجد اسم جيب الزواية واستعمالها في كتاب ابن الزرقالي. وقد ألف كذلك جداول لعلم حساب المثلثات ترجمها الغرب إلى اللاتينية. ويقول "سيديو" عن إنجازات البتاني في علم المثلثات: "يرجع أول تقدم في علم المثلثات إلى البتاني، فقد بدا لهذا الفلكي العظيم -الملقب ببطليموس العرب- أن يستبدل الأقواس بالأوتار للأقواس المضاعفة أي جيوب الأقواس المقترحة". ثم يذكر من أقوال البتاني قوله: "لم يستعمل بطليموس الأوتار الكاملة إلا لتسهيل التطبيقات، وأما نحن فقد اتخذنا أنصاف الأقواس المضاعفة". وانتهى البتاني إلى الدستور الأساسي للمثلثات الكروية فطبقه غير مرة، ونجد في كتب البتاني لأول مرة مبدأ مماس القوس، وتعبير (جيب تمام الجيب) الذي لم يستعمله الإغريق قط، وأدخل البتاني هذا المبدأ إلى حسابات الساعة الشمسية فسماه الظل الممدود، وليس هذا سوى المماس المثلثي عند علماء الوقت الحاضر. وأضاف "إيرك بل" في كتابه "تطورات الرياضيات": "إن البتاني هو أول عالم أدخل علم الجبر على علم حساب المثلثات بدلا من الهندسة كما كان الحال في القديم.

ومن أشهر المشتغلين بعلم الرياضيات والميكانيك: أبناء موسى بن شاكر، وقد عالجوا ألوانًا من التأليف طرقت: علم الحيل، وعلم المثلثات؛ حيث لجأوا إلى طريقة جديدة تعتمد المنحنيات في تقسيم الزاوية إلى ثلاثة أقسام متساوية، ووضع مقدارين ليتوالى على قسمة واحدة واستعملوا القانون المشهور في عالم المثلثات باسم "قانون هيرون"، وذلك لتقدير مساحة المثلث إذا علم طول كل ضلع من أضلاعه.
وقضى أبو الوفاء جل وقته في دراسة مؤلفات البتاني في علم حساب المثلثات فعلق عليها وفسر الغامض منها.

ويقول الدكتور "موريس كلاين" عن أبي الوفاء في كتابه "تاريخ الرياضيات من الغابر إلى الحاضر": "إن أبا الوفاء عرف بعض النقط الغامضة في مؤلفات العالم المسلم المشهور البتاني وشرحها". وهكذا أسهمت الحضارة الإسلامية في إثراء الفكر الرياضي بأهم مقومات تقدمه وازدهاره، وهى العناية بالبحث العلمي والتطبيقي إلى جانب الدراسات النظرية على أساس علمي سليم يعتمد على المنهج التجريبي الاستقرائي؛ ولهذا حفل التراث العلمي الإسلامي بالكثير من النظريات والأفكار الرياضية الأصيلة التي أجمع المؤرخون على أهميتها واعتماد المحدثين عليها. ويقول الكاتب "رام لاندو" في كتابه "مآثر العرب في الحضارة": "إن المسلمين قدموا كثيرًا من الابتكارات في حقل الرياضيات، ومع ذلك فإن معظم الأمريكان والأوربيين لم يعودوا يتذكرون من أي مخزن اكتسب العالم المسيحي الأدوات التي لم يكن لتصل الحضارة الغربية إلى مستواها الحالي إلا بها".وظهر من علماء الرياضيات النابغين مجموعة كبيرة تكمل انجازات السابقين وتبنى عليها ومن هؤلاء: نصير الدين الطوسي، وكان عالمًا فذًا في الرياضيات والفلك، ويقول "جورج سارتون" في كتابه تاريخ العلوم: " إن نصير الدين الطوسي يعتبر من أعظم علماء الإسلام ومن أكبر رياضييهم"

فأبدع في علم الرياضيات بجميع فروعه، و يوضح ذلك الدكتور"موريس كلاين" في كتابه "تاريخ الرياضيات من الغابر حتى الحاضر": "أن نصير الدين الطوسي كان يعرف معرفة تامة الأعداد الصم، ويظهر ذلك من بحوثه لمعادلات صماء مثل:
الجذر التربيعي ل (أ ب) = حاصل ضرب الجذر التربيعي ل (أ) × الجذر التربيعي ل (ب)،
والجذر التربيعي لحاصل ضرب (أ^2) × (ب^2) = أب.
كما كانت لديه خبرة جيدة بالدوال الجبرية الصماء، وبالمثلث الكروي القائم الزاوية وهذا يظهر من رسالة "الأشكال الرباعية الأضلاع "، ويقول الدكتور "درك سيترك" في كتابه "ملخص تاريخ الرياضيات": "إن نصير الدين الطوسي من المفكرين الأوائل في الأعداد التي ليس لها جذور-الأعداد الصم-، ولو أعطى كل ذي حق حقه فإنه من الجدير أن يقال إنه المبتكر الأول لهذه الأعداد التي لعبت في الغابر دورًا مهمًا ولا تزال لها أهميتها العظمى في الرياضيات الحديثة التي تدرس الآن في جميع أنحاء العالم. واشتهر نصير الدين الطوسي بعلم حساب المثلثات، فألف فيه كتاب " شكل القطاعات"، وهو يحتوى على حساب المثلثات فقط، فنجح بذلك في فصل حساب المثلثات عن علم الفلك، ويذكر الدكتور "ديفيد يوجين سميث" في كتابه "تاريخ الرياضيات": "إن نصير الدين كتب أول كتاب في علم حساب المثلثات سنه 846ه نجح فيه نجاحًا تامًا في فصل حساب المثلثات عن علم الفلك"، ثم أضاف "...إن نصير الدين هو أول من طور نظريات جيب الزاوية إلى ما هيعليه الآن مستعملاً في المثلث المستوى".

وأوضح البروفيسور "إريك بل" في كتابه "الرياضيات وتطويرها عبر التاريخ": أنه كان لكتاب نصير الدين الطوسي في علم حساب المثلثات الأثر الكبير في علماء الرياضيات في الشرق والغرب، بما فيه من الابتكارات الجديدة التي أفادت وطورت هذا الحقل". كما اهتم بالهندسة الفوقية، أو الهندسة الإقليدسية، فقال البروفيسور "درك سترديك" في كتابه "ملخص تاريخ الرياضيات": "إن نصير الدين الطوسي حاول بكل جدارة أن يبرهن على الموضوعة الخامسة من موضوعات إقليدس، فكانت محاولته بدء عصر جديد في علم الرياضيات الحديثة؛ لهذا انصبت عقليته العظيمة على برهانها، وهو: ( أن مجموع زوايا المثلث تساوى زاويتين قائمتين). وألف نصير الدين الطوسي أكثر من (145) مؤلفا في حقول مختلفة منها: علم حساب المثلثات، والجبر، والهندسة، والجغرافية، والهيئة، وغيرها منها: مقالة تحتوى على الشكل القطاعي السطحي والنسب الواقعة فيه، والرسالة الشافية عن الشك في الخطوط المتوازية، كتاب تحرير إقليدس، وغيرها؛ ولهذا فإن نصير الدين ترجم ودرس واختصر، وأضاف نظريات جديدة إلى إنتاج من سبقه من علماء شرقيين وغربيين، فأرسى قواعد إنتاجه العلمي على تجاربه، وتجارب الآخرين وألوان نشاطهم المختلفة، كما كان نصير الدين الطوسي موسوعة في العلوم كلها، فألف كتبًا كثيرة استفاد منها من تبعه.

 كان كثير من علماء الأندلس ينبغون في عدة علوم، ولا يقتصرون على علم واحد حيث لم يكن التخصص الدقيق معروفًا في ذلك الوقت. وكان من أوائل من اشتغل بالرياضيات في الأندلس ولفت الأنظار إليها أبو القاسم مسلمة المجريطى الذي وصفه صاعد بأنه "كان إمام الرياضيين في وقته"، وتخرج على يديه كثير من الطلاب مثل: ابن السمح، وابن الصفار، والزهراوى، والكرمانى، وغيرهم. كما برع عباس بن فرناس في علم عدد الهندسة الميكانيكية، حيث ابتكر الآلة المعروفة بالميقاتة لمعرفة الوقت على غير رسم ومثال، وكذلك القاسم بن أصبغ بن السمح الذي برع في علم الحساب والهندسة، وله عدة مؤلفات منها: كتاب "المدخل إلى الهندسة" شرح فيه كتاب إقليدس، وكتاب كبير آخر في الهندسة. وكذلك أبو الحسن الزهراوى، وكان عالمًا بالهندسة والعدد وله كتاب في الهندسة بعنوان: "المقابلات عن طريق البرهان". 

كما اشتهر أبو الحكم عمرو بن عبد الرحمن الكرمانى القرطبى بالهندسة أيضًا، وكان قد رحل إلى المشرق في طلبها خاصة في حران، ثم عاد إلى الأندلس وصار لا يشق له غبار فيها. وكذلك ابن الصفار الذي اشتهر بالحساب والهندسة، وكذلك أبو بكر بن عيسى، وكان مقدمًا في علم الهندسة والعدد، وكان يجلس للتعليم فيها. ومن الرياضيين المشهورين بالأندلس أيضًا محمد بن الفرج الرشاشى الذي عرف بالذراع؛ نظرًا لأنه ابتكر وحدة قياسية للمسافات هى الذراع الذي نسب إليه فأصبح يعرف بالذراع الرشاشى، وكان أهل الأندلس يقيسون به، وبلغ طوله ضعف الذراع المأمونى الذي كان معروفًا في المشرق (71.1سم)، ويذكر أن الإدريسى والبكرى قد استخدماه في قياس بعض المعالم الأثرية كجامع قرطبة وغيره.

ومن علماء الأندلس في الهندسة أبو مسلم بن خلدون من أشراف إشبيلية، وتلاميذه ابن برغوث -وكان عالمًا في الرياضيات-، وأبو الحسن مختار الرعينى، وعبد الله بن أحمد السرقسطى، وكان متعمقًا في علم الهندسة والعدد، ومحمد بن الليث، وكان بارعًا في العدد والهندسة، وابن الوقشى الطليطلى، وكان عارفًا بالهندسة. وحل جابر بن أفلح مرة مثلثًا كرويًا قائم الزاوية علم ضلعه، والزاوية المجسمة المجاورة له، واشتهر في عهد بنى الأحمر يحيى بن هذيل، وكان بارعًا في الهندسة والرياضيات.

ونبغ محمد بن يوسف بن عميرة الأنصارى في الرياضيات، والعلوم الهندسية، ومحمد بن منخل بن ريان، وكان متحققًا بالفرائض والحساب، بصيرًا بالمساحة، والفضل بن محمد بن أحمد بن إسحق البلنسى، وأحمد بن أبى الطرف عبد الرحمن بن أحمد البلنسى، وأحمد بن إبرهيم الأنصارى مهر في علوم الحساب والهندسة حتى كان لايدانى في ذلك، وتصدر لإفادة ذلك وتعليمه ببلده مدة طويلة، فأخذ عنه أهله، وشهر بالعدالة والصلاح والدماثة ووفور العقل، ومحمد بن بكر الفهرى، وأحمد بن إبراهيم بن على العبدرى، وكان واحدًا من النابغين في العدد والهندسة من فنون التعاليم، وقد ألف في الفنين تصانيف جليلة، وتلاخيص هامة، واستنباطات رائعة، ومن أشهر تصانيفه "فقه الحساب"، ومقالة في استنباط أعداد الوقف، وكتاب "تجريد أخبار كتب الهندسة على اختلاف مقاصدها" علاوة على دراسة كتاب "الأركان" لإقليدس.

وفد إلى معاهد المسلمين بإسبانيا كثير من التلاميذ الذين أصبحوا فيما بعد أساتذة وقادة في الدراسات الرياضية والطبية، ومن بين هؤلاء "إدلارد الباشى"، و"مورلى النور" الفلكى البريطانى. وكان هؤلاء يعودون إلى بلادهم ليعلموا أقوامهم ما تلقوه من أساتذتهم المسلمين، كما كانوا يترجمون أهم ما كتبه الباحثون المسلمون، وقد نقلوا الأرقام المستخدمة اليوم في جميع أنحاء العالم المقتبسة من "حروف الغبار" التي استعملت أولاً بالأندلس والمغرب العربى قبل زحفها على سائر الأقطار، ولذلك سميت بالأرقام العربية، ونقلت إلى الغرب بواسطة "جربرت" الذي تلقى ثقافته في إسبانيا أيضًا قبل أن يحتل منصب البابوية باسم "سلفرستر الثانى"، ولم تستعمل هذه الأرقام في الغرب إلا في منتصف القرن الثالث عشر، وكان استعمالها على يد "لوفردوفيبا نوسى"، وقد تلقى هذا دراسته أيضا على مدرس مسلم.

ومؤلفات "لونردو" كانت حجر الأساس في الرياضة عند الأروبين، وقد حوت هذه المؤلفات النسب المثلثية الست التي وضعها الرياضيون المسلمون، أما المؤلفات الرياضية التي كتبها (Goerge Purbach) أستاذ الرياضيات في "فينا" في القرن الخامس عشر، فقد اعتمد أكثر الاعتماد على أبحاث الزرقالى، وله تلميذ اسمه (Johannes muller) أصبح فيما بعد أستاذًا في (padua) وله بحث في الرياضيات نشر أكثر من مرة خلال القرن السادس عشر، ويعتبر أول بحث كامل في حساب المثلثات كتبه أوربى، وقد كان هذا البحث بكل تأكيد أقل مستوى من الأبحاث التي كتبها المسلمون.


يصعب علينا حصر نتاج الكاشى عملاق الرياضيات في القرن التاسع الهجري في أسطر قليلة، ولكن سوف نحاول أن نعطى فكرة مختصرة عن بعض ابتكاراته المشهورة.

عاش "ليوناردو فيبوناشى" العالم الإيطالى في القرن الثالث عشر الميلادي، وكان معروفًا عند معظم علماء الرياضيات بليوناردو بيسانو، نسبة إلى مسقط رأسه مدينة "بيسانو" التي كانت أكثر مدينة تجارية في إيطاليا في ذلك الوقت، وقد زار "فيبوناشى" الكثير من البلاد الإسلامية، وتلقى علمه على يد علماء المسلمين في الأندلس، وكتب في جميع فروع الرياضيات. كان معظم نتاجه منقولا عن علماء المسلمين، وأهم دراساته كانت حول تقدير قيمة النسبة التقريبية فحصل على نسبة محيط الدائرة إلى قطرها بما قدرهُ (3.141818). ولكن الكاشى الذي أتى بعد "فيبوناشى" بحوالى قرن واحد توصل إلى قيمة أدق بكثير تكاد تعادل النتيجة التي توصل إليها علماء القرن العشرين باستعمال الآلات الحاسبة.

ابتكر الكاشى الكسور العشرية، وكان لهذا الابتكار أثر كبير في تقدم الحساب، وفي اختراع الآلات الحاسبة، واعترف له بذلك علماء الشرق والغرب. واستخدم الكاشى الصفر لأول مرة لنفس الأغراض التي نستعمله فيها اليوم. ويذكر الأستاذ "ديفيد يوجين سمث" في كتابه تاريخ الرياضيات: "إن الخلاف بين علماء الرياضيات كثير ولكن اتفق أكثرهم على أن الكاشى هو الذي ابتكر الكسر العشرى".

ومن مؤلفاته:
1- كتاب "زيج الخاقانى"، وهو عبارة عن تصحيح زيج الأيلخانى للطوسى.
2- رسالة في الحساب.
3- كتاب "مفتاح الحساب".
4- رسالة في الهندسة.
5- كتاب "في علم الهيئة".

وقد قدم الكاشى أعظم خدمة للحضارة الإنسانية بما كتبه في مختلف فروع العلوم، فكان موسوعة في علم الحساب محتذيًا في ذلك حذو من سبقه من علماء المسلمين، وقد ألف في هذا المجال بصورة علمية منظمة. كان كتابه مفتاح الحساب منهلا استسقى منه علماء الشرق والغرب على السواء، واعتمدوا عليه في تعليم أبنائهم في المدارس والجامعات لمدة قرون، كما استخدموا الكثير من النظريات والقوانين التي أتى بها الكاشى وبرهنها وابتكرها.

تعلم الكاشى على يد أشياخه في العلوم الدقة في التصور للمسائل المستعصية على الأمم السابقة مثل اليونان وغيرهم، فحل الكثير منها بطرق علمية بحتة. ولذا يعتبر الكاشى ممن وضعوا أسس البحث العلمى، وقد عرفت عنه قوة الملاحظة وحب الاستطلاع. ومن واجب شبابنا أن يتعرف أولا مدى عظمة هذا العالم الفذ حتى يصبح قوة يقتدى به لجيلنا المتطلع إلى التقدم والكرامة.

من أبرز إنجازات المسلمين في الرياضيات في العصر المملوكى اكتشاف الكسور العشرية، وينسب هذ الإنجاز إلى غياث الدين بن مسعود بن محمد الكاشى، أبرز علماء الرياضيات في ذلك العصر، وقد ولد الكاشى في أواخر القرن الثامن الهجري في مدينة قاشان، وتوفي عام (839ه).
تم ادراج تقرير كامل عن الرياضيات تاريخها و علومها جاهز للطباعة بتاريخ 25/12/2010 ورقمه لدينا 635523
 
التعليقات

لم يعلق احد حتى الآن .. كن اول من يعلق بالضغط هنا

اعلانات